Dynamic Surface Tension of Ionic Liquid [C10(EPy)2]Br2 Using Maximum Bubble Pressure Method

Article Preview

Abstract:

The ionic liquids used in this study are (1,1’-decane-1,10-diylbis (3-ethylpyridinium) dibromide. The reason of this experiment is to figure out character of ionic liquids called green solvent. It can help to use of ILs to know that specific feature since ionic liquids are made so many different way. Using maximum bubble pressure method, we tested dynamic surface tension in range of 298K~418K and time range is 0.03s~60s. Among various method of inspecting dynamic surface tension, maximum bubble pressure is the easiest way to have such description of the solution at air/water interface. In the short time, it show only diffusion model, but in the long time range there is different aspect which it called diffusion-controlled model

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 622-623)

Pages:

1410-1414

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Latif, in Dynamic surface tensiometric analysis of surfactant-polymer system by maximum bubble pressure method.

Google Scholar

[2] R. Miller, V.B. Fainerman, K.H. Schanko, A. Hofmann: TensideSurfact. DetVol. 34 (1997), p.357.

Google Scholar

[3] R. Miller, S.A. Zholob, A. V Makievski, P Joos, V. B Fainerman: Langmuir Vol. 15 (1997), p.7530.

Google Scholar

[4] J. Hutchison, D Klenerman, S Manning-Benson, C. D Bain: Langmuir, Vol. 17 (1999), p.7530.

Google Scholar

[5] T. Horozov, M. J Shao, Y. C Lee, S. Y L: Langmuir. Vol. 16 (2000), p . 4868.

Google Scholar

[6] T. Horozov and L. Arnaudov: J. Colloid Interface Sci Vol. 219 (1999), p.99.

Google Scholar

[7] C.D. Bain, S. Manning-Benson., R. C Darton: J. Colloid Interface Sci Vol. 229 (2000), p.247.

Google Scholar

[8] S. Manning-Benson., C.D. Bain., R. C. Darton., D. Sharpe., J. Eastoe., P. Reynolds: Langmuir Vol. 14 (1997), p.990.

DOI: 10.1021/la970457v

Google Scholar

[9] C. Amutha, K. Hern: Chem. Eng. J. Vol. 187 (2012), p.284.

Google Scholar

[10] J. Eastoe, A. Rankin, R. Watand Colin: Taylor &Francis, 2012, p.361.

Google Scholar

[11] J.L. Chai., X.D. Yang., J.F. Gao and Zh.N. Wang: 2006, Colloid, 221.

Google Scholar

[12] V.D. Fainerman., A.V. Makievski., R. Miller: Colloids Interface Sci. Vol. 175 (1994), p.51.

Google Scholar

[13] F. Ravera., L. Liggieri, A. Steinchen: Colloid interface Sci. Vol. 156 (1994), p.109.

Google Scholar

[14] L. Liggieri., F. Ravera., A. Passerone. Colloid interface Sci. Vol. 20 (1996), p.351.

Google Scholar

[15] S.S. Dukhin, G. Kretzschmar, R. Miller, Amsterdan, (1995), p.103.

Google Scholar

[16] S. U Um, E. Poptoshev, R.J. Pugh: J. Colloid Interface Sci. Vol. 193 (1997), p.41.

Google Scholar

[17] C. Ybert, J.M. di Meglio: Langmuir Vol. 14 (1998), 471.

Google Scholar

[18] J. Eastoe, J.S. Dalton: Langmuir, Vol. 14 (1988), p.5719.

Google Scholar

[19] J. Eastoe, J. Dalton, P. Rogueda, D. Sharpe, J. F. Dong: Langmuir Vol. 12 (1996), p.2711.

Google Scholar