[1]
H. Chen, A. Hao and Z. Long: The controller design and performance index analysis of Maglev train's suspension system, in Proc. Of the 5th world congress on Intelligent Control and Automation, China (2004), pp.596-599.
DOI: 10.1109/wcica.2004.1340645
Google Scholar
[2]
L. Yan: Development and application of Maglev transportation system, IEEE Transactions on Applied Superconductivity, Vol. 18, No. 2 (2008), p.92–99.
DOI: 10.1109/tasc.2008.922239
Google Scholar
[3]
G. Shu and R. Meisinger: State Estimation and Simulation of the magnetic Levitation System of a High-Speed Maglev Train, International Conference on Electronic & Mechanical Engineering and Information Technology, 12-14 August (2011).
DOI: 10.1109/emeit.2011.6023250
Google Scholar
[4]
H.W. Lee, K.C. Kim and J. Lee: Review of Maglev train technologies, IEEE Transactions on Magnetics, Vol. 42, No. 7 (2006), p.1917-(1925).
DOI: 10.1109/tmag.2006.875842
Google Scholar
[5]
P. Samanta and H. Hirani: Magnetic bearing configurations Theoretical and experimental studies, IEEE Transactions on Magnetics., Vol. 44, No. 2 (2008), p.292–300.
DOI: 10.1109/tmag.2007.912854
Google Scholar
[6]
D. S Liu, J. Li and W.S. Chang: Internal model control for magnetic suspension system, in Proceedings of the 4th International Conference on Machine Learning and Cybernetics, Guangzhou, China (2005), pp.482-487.
DOI: 10.1109/icmlc.2005.1526994
Google Scholar
[7]
Z.J. Yang, K. Miyazaki, S. Kanae, and K. Wada: Robust position control of a magnetic levitation system via dynamic surface control technique, IEEE Transaction on Industrial Electronic, Vol. 51, No. 1 (2004), pp.26-34.
DOI: 10.1109/tie.2003.822095
Google Scholar
[8]
W. Barie and J. Ckiasoson: Linear and nonlinear state-space controllers for magnetic levitation, International Journal of systems Science, Vol. 27, No. 11 (1996), pp.1153-1163.
DOI: 10.1080/00207729608929322
Google Scholar
[9]
H. Liu and X. Zhang and W. Chang: PID Control to Maglev Train System, International Conference on Industrial and Information Systems (2009).
DOI: 10.1109/iis.2009.24
Google Scholar
[10]
C. Peng, L. Jie, Z. Kun and C. Wensen: Design of the Suspension Controller Based on Compensating Feedback Linearization, International Conference on Measuring Technology and Mechatronics Automation. ( 2010).
DOI: 10.1109/icmtma.2010.714
Google Scholar
[11]
D.S. Liu, J. Li and W.S. Chang: Internal model control for magnetic suspension systems, in Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, 18-21. August (2005), pp.482-487.
Google Scholar
[12]
Yang and M. Tateishi: Adaptive robust nonlinear control of a magnetic levitation system, Automatica, Vol. 37 (2001), pp.1125-1131.
DOI: 10.1016/s0005-1098(01)00063-2
Google Scholar
[13]
N. F. Al-muthairi and M. Zribi: Sliding Mode Control of a Magnetic Levitation System, Mathematical Problems in Engineering, Vol. 2 (2004), p.93–107.
DOI: 10.1155/s1024123x04310033
Google Scholar
[14]
A.E. Hajjaji and M. Ouladsine: Modeling and nonlinear control of magnetic levitation systems, IEEE Transaction on Industrial Electronic, Vol. 48, No. 4 (2001), p.831–838.
DOI: 10.1109/41.937416
Google Scholar
[15]
S.J. Joo and J. H. Seo: Design and analysis of the nonlinear feedback linearizing control for an electromagnetic suspension system, IEEE Transactions on Control System Technology, Vol. 5, No. 1 (1997), p.135–144.
DOI: 10.1109/87.553672
Google Scholar
[16]
S. Sujitjorn and W. Wiboonjaroen: State-PID feedback for pole placement of LTI system, Mathematical Problems in Engineering, 929430-DOI (2011).
DOI: 10.1155/2011/929430
Google Scholar
[17]
J. Ackermann: Der Entwurf linearer Regelungsysteme im Zustandraum, Regeltech, Proz. - Datenverarb (1972), pp.297-300.
Google Scholar
[18]
K. Ogata, in: Modern Control Engineering. Third Edition, Prentice Hall (1997).
Google Scholar