Determination of Enantiomeric Composition of Dopa by Using UV Spectroscopy Combined with Principal Component Regression

Article Preview

Abstract:

A method which combines UV spectroscopy, guest–host chemistry and principal component regression (PCR) was proposed for determining the enantiomeric composition of DOPA samples. The calibration models were developed from UV spectral data of a series of samples containing DOPA with different known enantiomeric compositions by using PCR. The obtained model was subsequently validated by determining the enantiomeric composition of a set of independently prepared samples. This method shows high sensitivity for determining the enantiomeric composition of DOPA. When there is 5.00 μM DOPA in the samples, the enantiomeric composition of DOPA can be accurately determined.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 622-623)

Pages:

1451-1455

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.T. Reetz: Angew. Chem. Int. Ed. vol. 40 (2001), pp.284-310.

Google Scholar

[2] S.L. Wei: G.Q. Song, and J.M. Lin, J. Chromatogr. A vol. 1098 (2005), pp.166-171.

Google Scholar

[3] I.J.D. Junior, M.A.G.D. Santos, V. de Veredas, and C. Santana: Sep. Sci. Technol. vol. 40 (2005), pp.2593-2596.

Google Scholar

[4] M. Abid, and B. Torok, Tetrahedron: Asymmetry vol. 16 (2005), pp.1547-1555.

Google Scholar

[5] C.L. Zu, B.N. Brewer, B.B. Wang, and M.E. Koscho: Anal. Chem. vol. 77(2005), pp.5019-5027.

Google Scholar

[6] K.W. Busch, I.M. Swamidoss, S.O. Fakayode, and M.A. Busch: J. Am. Chem. Soc. vol. 125 (2003), pp.1690-1691.

Google Scholar

[7] S.O. Fakayode, M.A. Busch, D.J. Bellert, and K.W. Busch: Analyst vol. 130(2005), pp.233-241.

Google Scholar

[8] K.W. Busch, I.M. Swamidoss, S.O. Fakayode, and M.A. Busch: Anal. Chim. Acta. vol. 525(2004), pp.53-62.

Google Scholar

[9] S.O. Fakayode, I.M. Swamidoss, M.A. Busch, and K.W. Busch: Talanta vol. 65(2005), pp.838-845.

DOI: 10.1016/j.talanta.2004.08.017

Google Scholar

[10] S.O. Fakayode, M.A. Busch, and K.W. Busch: Talanta vol. 68(2006), pp.1574-1583.

Google Scholar

[11] C.D. Tran, V.I. Grishko, and D. Oliveira: Anal. Chem. vol. 75(2003), pp.6455-6462.

Google Scholar

[12] C.D. Tran, D. Oliveira, and S.F. Yu: Anal. Chem. vol. 78(2006), pp.1349-1356.

Google Scholar

[13] Y.X. Wang, F. Zhang, J. Liang, H. Li, and J.L. Kong: Spectro. Acta. A vol. 68(2007), pp.279-283.

Google Scholar

[14] M. Blanco, J. Coello, H. Iturriaga, S. Maspoch, and M. Porcel: Anal. Chim. Acta. vol. 431 (2001), pp.115-123.

Google Scholar

[15] X.L. Yin, J.J. Ding, S. Zhang, and J.L. Kong : Biosens. Bioelectron. vol. 21(2006), pp.2184-2187.

Google Scholar

[16] Y.X. Wang, X.L. Yin, M.H. Shi, W. Li, L. Zhang, and J.L. Kong: Talanta vol. 69(2006), pp.1240-1245.

Google Scholar

[17] X.C. Lin, S.L. Zhao, X. Lu, S.T. Li: Chin. J. Anal. Chem. vol. 34(2006), pp.859-862.

Google Scholar

[18] G. M. Escandar, N.M. Faber, H.C. Goicoechea, A. M. de la Pena, A.C. Olivieri, and R.J. Poppi: Tren. Anal. Chem. vol. 26(2007), pp.752-765.

Google Scholar

[19] Y.F. Xie, Y. Song, Y. Zhang, and B. Zhao: Spectrochim. Acta. A vol. 75(2010), pp.1535-153.

Google Scholar

[20] T.F. Marhaba, A.D. Borgaonkar, and K. Punburananon: J. Hazard. Mater. vol. 169 (2009), pp.998-1004.

Google Scholar

[21] O. Divya, and A.K. Mishr: Talanta vol. 72(2007), pp.43-48.

Google Scholar