Poly(vinyl alcohol) Membrane with Surface Immobilized β-Cyclodextrin Synthesis via Glutaraldehyde

Article Preview

Abstract:

A novel cyclodextrin (CD) grafted polyvinyl alcohol (PVA) material has been synthesized. Beta-cyclodextrin (βCD) is chemically grafted into PVA via glutaraldehyde (GA) in acidic medium (HCl). The reaction mechanism and the membrane surface grafting are confirmed by Fourier Transform Infrared Spectroscopy (FTIR), modulus of elasticity and contact angle determination. An amount of PVA and βCD are dissolved in a pH 3 HCl solution at 90oC with continuous stirring. Glutaraldehyde was slowly added into the clear solution to effect grafting and crosslinking between the PVA and βCD. It was cooled and allowed to stand overnight to eliminate bubbles formed. The clear PVA-GA-βCD material is casted on a glass plate to form membranes which are peeled off after subsequent drying. The grafted and crosslinked membrane showed peaks in the IR spectra confirming the chemical bonding between PVA, GA and βCD. PVA-GA-βCD membrane is 6% stronger than the physically blended membrane as shown by the increase of its modulus of elasticity. Likewise, a reduction in the hydrophilicity is observed by the newly synthesized membrane as shown by the increase of the membrane’s contact angle.This newly developed material with immobilized βCD may significantly improve the performance of PVA-CD pervaporation membranes by reducing the phase separation phenomenon due to agglomeration of CD in high concentrations as well as preventing βCD from dissolving in aqueous feed. Moreover, this may open new perspective for the development of high performance nanofibers and other nanomaterialssuch as drug delivery system materials and inclusion complexes.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 622-623)

Pages:

1774-1778

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Linder, M. Perry, R. Katraro, US Patent 4, 753, 725 (1980).

Google Scholar

[2] C. Linder, O. Kedem. History of nanofiltration membranes 1960 to 1990. In: Schafer AI, Fane AG, Waite TD, editors. Nanofiltration-principles and applications. Oxford: Elsevier; 2005. pp.21-31.

DOI: 10.1002/9783527824984.ch1

Google Scholar

[3] U. Sander and P. Soukup: J. Membrane Sci. 36, 463 (1988).

Google Scholar

[4] R.Y.M. Huang and C.K. Yeom: J. Membrane Sci. 51, 273 (1990).

Google Scholar

[5] H.E.A. Bruschke, G.F. Tusel, and R. Rautenbach: Amer. Chem Soc., 467 (1985).

Google Scholar

[6] T. Sawai, N. Usui, K. Sando, Y. Fukui, S. Kamata, A. Okada, N. Taniguchi, N. Itano, and K. Kimata: J. Pediatr. Surg. 41, 32 (1997).

DOI: 10.1016/s0022-3468(97)90089-0

Google Scholar

[7] R.C. Peterson, J.S. Wolffsohn, J. Nick, L. Winterton and J. Lally: Contact Lens &Anterior Eye, 29, 127 (2006).

DOI: 10.1016/j.clae.2006.03.004

Google Scholar

[8] W.S. Dai and T.A. Barbari: Biomaterials. 21, 1363 (2000).

Google Scholar

[9] A. Yamasaki andK. Mizoguchi: J. Appl Polym Sci. 51: 2057 (1994).

Google Scholar

[10] A. Yamasaki, T. Iwatsubo, T. Masuoka, K. Mizoguchi:J. Membrane Sci. 89: 111 (1994).

Google Scholar

[11] H. L Chen, L.G. Wu, J. Tan, C.L. Zhu: Chem Eng J. 78: 159 (2000).

Google Scholar

[12] S.P. Kusumocahyo, K. Sumaru, T. Kanamori, T. Iwatsubo and T. Shinbo: J. Membrane. Sci. 230: 171 (2004).

Google Scholar

[13] Sj. Lue andS.H. Peng: J. Membrane Sci. 222: 203 (2003).

Google Scholar

[14] F.B. Peng, Z.Y. Jiang, C.L. Hu, Y.Q. Wang, L. Lu andH. Wu: Desalination. 193: 182 (2006).

Google Scholar

[15] E. Schneiderman, A. Stalcup: J Chromatogr B. 745: 83 (2000).

Google Scholar

[16] M.L. Bender, M. Komiyama: Cyclodextrin Chemistry. Berlin: Springer-Verlag, (1978).

Google Scholar

[17] Y. Wang, T.S. Chung, H. Wang andS.H. Goh: Chem Eng Sci. 64-5198 (2009).

Google Scholar

[18] E. Renard, A. Deratani, G. Volet and B. Sebille: Eur. Polym. J. 33(1): 49-57 (1997).

Google Scholar

[19] T. Cserhati, E. Fenyvesi and J. Szejtli: J. Incl. Phenom. 14: 181 (1992).

Google Scholar

[20] T. Cserhati and E. Forgacs: J. Chromatogr. 660: 313 (1994).

Google Scholar

[21] Y. Wang, T.S. Chung andH. Wang: AIChe Journal. 57: 6 (2011).

Google Scholar

[22] Kj. Kim, S.B. Lee, N.W. Han: Korean J. of Chem. Eng. 11(1), 41-47 (1994).

Google Scholar

[23] P.G. de Gennes: Wetting: statics and dynamics. Reviews of Modern Physics 57 (3): 827–863 (1985).

DOI: 10.1103/revmodphys.57.827

Google Scholar

[24] A.F. Azarbayjani, L. Qun, Y.W. Chan, and S.Y. Chan: AAPS PharmSciTech. 11: 3 (2010).

Google Scholar

[25] K. Sreenivasan: J Appl Polym Sci. 65: 9 (1998).

Google Scholar