Effect of Sericin Protein on Growth of Hydroxyapatite over Surface of Silk Fibers Using Simulated Body Fluid

Article Preview

Abstract:

Crystal of hydroxyapatite (HAp) was grown on silk fibers using simulated body fluid (SBF) at a temperature of 37 °C. Effect of SBF concentrations and sericin protein on the growth of HAp crystals on the silk fiber was discussed. The results showed that sericin protein was an important parameter to induce HAp crystals. Furthermore, the crystal was grown perfectly for both 1.0 and 1.5  standard SBF concentrations but difference in HAp crystal size. Sericin protein may lower nucleation barrier and high surface area to absorb SBF for HAp nucleation. These results may be a new research topic on HAp crystallization using protein as a seed. It may lead to further improvement and applied for many HAp-based biomaterial applications.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 622-623)

Pages:

1764-1767

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Wang, R. Nemoto and M. Senna: J. Eur. Ceram. Soc. Vol. 24 (2004), pp.2707-2715.

Google Scholar

[2] S.K. TenHuisen, I.R. Martin, M. Klimkiewicz, et. al.: J. Biomed. Mater. Res. Vol. 29 (1995), pp.803-810.

Google Scholar

[3] M. Kikuchi, S. Itoh, S. Ichinose, et. al.: Biomaterials. Vol. 22 (2001), pp.1705-1711.

Google Scholar

[4] C. Du, Z.F. Cui, W. Zhang, et. al.: J. Biomed. Mater. Res. Vol. 50 (2000), pp.518-527.

Google Scholar

[5] Y. Li, Y. Cai, X. Kong, et. al.: J. Biomed. Mater. Res. Vol. 29 (1995), pp.803-819.

Google Scholar

[6] R.Z. LeGeros, P.W. Brown, in: Hydroxyapatite and related Materials, edtied by B. Constantz, Florida, (1994), pp.3-28.

Google Scholar

[7] S.V. Dorzhkin and M. Epple: Angew. Chem. Int. Ed. Vol. 41 (2002), pp.3130-3140.

Google Scholar

[8] T. Kokubo, Bioceramics and their clinical application, CRC Press, Florida (2008), pp.3-24.

Google Scholar

[9] G.H. Altman, F. Diaz, C. Jakuba, et. al.: Biomaterials. Vol. 24 (2003), pp.401-416.

Google Scholar

[10] Y.Q. Zhang, Biotechnol. Adv. Vol. 20 (2002), pp.91-100.

Google Scholar

[11] N. Kato, S. Sato, A. Yamanaka, et. al.: Biosci. Biotechnol. Biochem. Vol 62 (1998), pp.145-147.

Google Scholar

[12] S. Zhaorigetu, N. Yanaka, M. SaSaki, et. al.: J. Photochem. Photobiol. B. Biol. Vol. 71 (2003), pp.803-810.

Google Scholar

[13] R. Daxh, Ch. Acharya, P.C., Bindu, et. al. BMB report (2007), pp.236-240.

Google Scholar

[14] T. Kokubo, H. Kushitani, S. Sakka, et. al.: J. Biomed. Mater. Res. Vol. 24 (1990), pp.721-734.

Google Scholar

[15] T. Kokubo, M. Hanakawa, M. Kawashita, et. al.: Biomaterials. Vol. 25 (2004), pp.4485-4488.

Google Scholar

[16] M. Uchida, H.M. Kim, F. Miyaji, et. al.: Biomaterials. Vol. 23 (2002), pp.313-317.

Google Scholar

[17] Ch. Wu and J. Chang: Material Letter. Vol. 61 (2007), pp.2502-2505.

Google Scholar

[18] G. Saraswathy, S. Pal, C. Rose, et. al.: Mater. Sci. Vol. 24 (2001), pp.415-420.

Google Scholar