[1]
J.N. Reddy, Z. -Q. Cheng: Three-dimensional thermomechanical deformations of functionally graded rectangular plates, European Journal of Mechanics A/Solids, 20, 841-855. (2001).
DOI: 10.1016/s0997-7538(01)01174-3
Google Scholar
[2]
R.C. Batra: Exact solution for thermoelastic deformations of functionally graded thick rectangular plates, AIAA Journal, 40: 1421–33. (2002).
DOI: 10.2514/3.15212
Google Scholar
[3]
M.M. Najafizadeh, M.R. Eslami: Buckling analysis of circular plates of functionally graded materials under uniform radial compression, International Journal of Mechanical Sciences 44(12): 2479-2493. (2002).
DOI: 10.1016/s0020-7403(02)00186-8
Google Scholar
[4]
S. Abrate: Free vibration, buckling, and static deflections of functionally graded plates, Composites Science and Technology 66 (14) 2383–2394. (2006).
DOI: 10.1016/j.compscitech.2006.02.032
Google Scholar
[5]
S.H. Chi, Y.L. Chung: Mechanical behavior of functionally graded material plates under transverse load-Part I: Analysis, International Journal of Solids and Structures 43 (13) 3657–3674. (2006).
DOI: 10.1016/j.ijsolstr.2005.04.011
Google Scholar
[6]
S.H. Chi, Y.L. Chung: Mechanical behavior of functionally graded material plates under transverse load—Part II: Numerical results, International Journal of Solids and Structures, 43 (13) 3675–3691. (2006).
DOI: 10.1016/j.ijsolstr.2005.04.010
Google Scholar
[7]
L.F. Qian, R.C. Batra, L.M. Chen: Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method, Composites Part B: engineering, 35, 685-697. (2004).
DOI: 10.1016/j.compositesb.2004.02.004
Google Scholar
[8]
A.J.M. Ferreira, R.C. Batra, C.M.C. Roque, L.F. Qian, P.A.L.S. Martins: Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method, Composite Structures, 69, 449-457. (2005).
DOI: 10.1016/j.compstruct.2004.08.003
Google Scholar
[9]
S.H. Chi, Y.L. Chung: Mechanical behavior of functionally graded material plates under transverse load. Part I and Part II, International Journal of Solids and Structures, 43, 3657-3674. (2006).
DOI: 10.1016/j.ijsolstr.2005.04.011
Google Scholar
[10]
F. Ramirez, P. Heyligher, E. Pan: Static analysis of functionally graded elastic anisotropic plates using a discrete layer approach, Composites Part B: engineering, 37, 10-20. (2006).
DOI: 10.1016/j.compositesb.2005.05.009
Google Scholar
[11]
E. Pan: Exact solution for functionally graded anisotropic elastic composite laminates, Journal of Composite Materials, 37, 1903-1920. (2003).
DOI: 10.1177/002199803035565
Google Scholar
[12]
N.J. Pagano: Exact solution for composites laminates in cylindrical bending, Journal of Composite Materials, 3, 398-411. (1969).
DOI: 10.1177/002199836900300304
Google Scholar
[13]
N.J. Pagano: Exact solution for rectangular bidirectional composites and sandwich plates, Journal of Composite Materials, 4, 20-35. (1970).
DOI: 10.1177/002199837000400102
Google Scholar
[14]
M. Kashtalyan: Three-dimensional elasticity solution for bending of functionally graded rectangular plates, European Journal of Mechanics A/Solids, 23, 853-864. (2004).
DOI: 10.1016/j.euromechsol.2004.04.002
Google Scholar
[15]
S. Brischetto, E. Carrera: Mixed theories for the analysis of Functionally Graded Material plates, Proceedings AIMETA_18, Structure, ST8-5. (2007).
Google Scholar
[16]
G.R. Liu Z.C. Xi, in: Elastic waves in anisotropic laminates, (CRC Press LLC, Boca Raton, London, New York, Washington D.C. 2002).
Google Scholar
[17]
Hui-Shen Shen, in: Functionally Graded Materials Nonlinear Analysis of Plates and Shells, (Taylor & Francis Group, CRC Press LLC. 2009).
Google Scholar