Polycaprolactone Fiber Bundles Prepared by Self-Bundling Electrospinning

Article Preview

Abstract:

Polycaprolactone (PCL) fiber bundles were successfully prepared by self-bundling electrospinning technique from two different concentrations (i.e. 12% and 15% w/v) of PCL solution. Self-bundling of electrospun fibers was induced by used of a grounded needle tip at the beginning of electrospinning process. Electrical conductivity of PCL solutions were increased and average fiber diameter were decreased by addition and increasing amount of pyridinium formate (PF) at concentration of 3, 4, and 5% w/v into either 12% or 15% w/v PCL solutions. The average diameter of electrospun fibers and bundles were in range of 2.1-3.3 m and 100-120 m, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 622-623)

Pages:

271-275

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Aussawasathien, S. Sahasithiwat, L. Menbangpung and C. Teerawattananon: Sensor. Actuator. B: Chemical Vol. 151 (2011), p.341.

Google Scholar

[2] K. Yoon, K. Kim, X. Wang, D. Fang, B.S. Hsiao and B. Chu: Polymer Vol. 47 (2006), p.2434.

Google Scholar

[3] Y.K. Luu, K. Kim, B.S. Hsiao, B. Chu and M. Hadjiargyrou: J. Control. Release Vol. 89 (2003), p.341.

Google Scholar

[4] P. Wutticharoenmongkol, N. Sanchavanakit, P. Pavasant and P. Supaphol: J. Nanosci. Nanotechno Vol. 6(2) (2006), p.514.

Google Scholar

[5] J. Doshi and D.H. Reneker: J. Electrostat Vol. 35 (1995), p.151.

Google Scholar

[6] H. Du, C. Cao, Y. Xu, X. An and H. Zhu: J. Non-Cryst. Solids Vol. 353 (2007), p.1041.

Google Scholar

[7] E.D. Boland, G.E. Wnek, D.G. Simpson, K.J. Palowski and G.L. Bowlin: J. Macromol. Sci. Pur. Appl. Chem Vol. A38(12) (2001), p.1231.

Google Scholar

[8] S. Chuangchote and P. Supaphol: J. Nanosci. Nanotechno Vol. 6 (2006), p.125.

Google Scholar

[9] Theron, E. Zussman and A.L. Yarin: Nanotechnology Vol. 12 (2001), p.384.

Google Scholar

[10] D. Li, Y.L. Wang and Y.N. Xia: Adv. Mater Vol. 16 (2004), p.361.

Google Scholar

[11] E. Smit, U. Buttner and R.D. Sanderson: Polymer Vol. 46 (2005), p.2419.

Google Scholar

[12] P.D. Dalton, D. Klee and M. Moller: Polymer Vol. 46 (2005), p.611.

Google Scholar

[13] H. Pan, L. Li, L. Hu and X. Cui: Polymer Vol 47 (2006), p.4901.

Google Scholar

[14] X. Wang, K. Zhang, M. Zhu, H. Yu, Z. Zhou, Y. Chen and B.S. Hsiao: Polymer Vol. 49 (2008), p.2755.

Google Scholar

[15] C. Mit-uppatham, M. Nithitanakul and P. Supaphol: Macromol. Chem. Phys Vol. 205 (2004), p.2327.

Google Scholar

[16] P. Wutticharoenmongkol, P. Supaphol, T. Srikhirin, T. Kerdcharoen and T. Osotchan: J. Polym. Sci - B: Polymer Physics, Vol 43(14) (2005), p.1881.

DOI: 10.1002/polb.20478

Google Scholar