A Novel Quantum-Dot Cellular Automata XOR Design

Article Preview

Abstract:

Quantum-dot cellular automata (QCA) is an emerging nanotechnology that promises faster speed, smaller size, and lower power consumption compared to the transistor-based technology. Moreover, XOR is a useful component for the design of many logical and functional circuits. This paper proposes a novel and efficient QCA XOR design. The proposed XOR design has been compared to a few recent designs in terms of area, speed and complexity. Comparison of results illustrates significant improvements in our design as compared to traditional approaches. Also simulation proves that the proposed XOR design is completely robust and more sustainable to high input frequency as compared to other designs. This robustness is highly significant when this component is applied for realizing larger designs.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 622-623)

Pages:

545-550

Citation:

Online since:

December 2012

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] International Technology Roadmap for Semiconductors (ITRS), http: /www. itrs. net, (2007).

Google Scholar

[2] C.S. Lent, P.D. Tougaw, W. Porod, and G.H. Bernstein, Quantum cellular automata, Nanotechnology, vol. 4, no. 1 pp.49-57, Jan. (1993).

DOI: 10.1088/0957-4484/4/1/004

Google Scholar

[3] A. O. Orlov, I. Amlani, G. Toth, C. S. Lent, G. H. Bernstein, and G. L. Snider , Experimental demonstration of a binary wire for quantum-dot cellular automata, Appl. Phys Lett, vol. 74, no. 19, pp.2875-2877, May (1999).

DOI: 10.1063/1.124043

Google Scholar

[4] I. Amlani, A. O. Orlov, R. K. Kummamuru, G. H. Bernstein, C. S. Lent and G. L. Snider, Experimental demonstration of a leadless quantum-dot cellular automata Cell, Appl. Phys Lett, vol. 77, no. 5, pp.738-740, July (2000).

DOI: 10.1063/1.127103

Google Scholar

[5] R.P. Cowburn and M.E. Welland, Room temperature magnetic quantum cellular automata, J. Sci, vol. 287, no. 5457, pp.1466-1468, Feb. (2000).

DOI: 10.1126/science.287.5457.1466

Google Scholar

[6] H. Qi, S. Sharma, Z. Li, G. L. Snider, A. O. Orlov, C. S. Lent, T. P. Fehlner, Molecular quantum cellular automata cells. electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata, J. Am. Chem Soc, vol. 125, pp.15250-15259, (2003).

DOI: 10.1021/ja0371909

Google Scholar

[7] R.K. Kummamuru, A. O. Orlov, R. Ramasubramaniam, C. S. Lent, G. H. Bernstein and G. L. Snider, Operation of a quantum-dot cellular automata (QCA) shift register and analysis of errors, IEEE Trans. Electron Devices, vol. 50, no. 9, pp.1906-1913, Sept. (2003).

DOI: 10.1109/ted.2003.816522

Google Scholar

[8] R. Zhang, K. Walus, W. Wang, and G. A. Jullien, A method of majority logic reduction for quantum cellular automata, IEEE Trans. Nanotechnol, vol. 3, no. 4, p.443–450, Dec. (2004).

DOI: 10.1109/tnano.2004.834177

Google Scholar

[9] K. Walus, G. Schulhof, G. A. Jullien, R. Zhang, and W. Wang, Circuit design based on majority gates for applications with quantum-dot cellular automata, in Conf. Rec. 38th Asilomar Conf. Signals, Systems and Computers, vol. 2, p.1354–1357, (2004).

DOI: 10.1109/acssc.2004.1399374

Google Scholar

[10] M. Rahimi Azghadi, O. Kavehei and K. Navi, A novel design for quantum-dot cellular automata cells and full adders, J. Applied Sci, vol. 7, pp.3460-3468, (2007).

DOI: 10.3923/jas.2007.3460.3468

Google Scholar

[11] R. Farazkish, M. Rahimi Azghadi, K. Navi and M. Haghparast, New method for decreasing the number of quantum dot cells in QCA circuits, J. Applied Sci, vol. 4, pp.793-802, (2008).

Google Scholar

[12] P.D. Tougaw and C. S. Lent, Logical devices implemented using quantum cellular automata, J. Appl. Phys, vol. 75, pp.1818-1824, (1994).

DOI: 10.1063/1.356375

Google Scholar

[13] S. Roy and B. Saha, Minority gate oriented logic design with quantum-dot cellular automata, Cellular Automata Lecture Notes in Computer Science, Volume 4173/2006, 646-656, Published by Springer, (2006).

DOI: 10.1007/11861201_75

Google Scholar

[14] V. C. Teja, S. Polisetti and S. Kasavajjala, QCA based multiplexing of 16 arithmetic & logical subsystems-a paradigm for nano computing, Proceedings of the 3rd IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems Jan. (2008).

DOI: 10.1109/nems.2008.4484438

Google Scholar

[15] S.K. lakshmi, G. Athisha, Efficient design of logical Structures and functions using nanotechnology based quantum dot cellular automata design, Int. J. Computer Applications, Vol. 3, No. 5, (2010).

DOI: 10.5120/726-1019

Google Scholar

[16] Rajeswari. D, Kolin. Paul and M. Balakrishnan, Clocking-based coplanar wire crossing scheme for QCA, 23rd IEEE Int. Conf. VLSI Design, pp.339-344, (2010).

DOI: 10.1109/vlsi.design.2010.39

Google Scholar

[17] K. Walus, T. Dysart, G. Jullien, and R. Budiman, QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata, IEEE Trans. Nano., vol. 3, no. 1, pp.26-29, (2004).

DOI: 10.1109/tnano.2003.820815

Google Scholar