Phase and Microstructure Evolution of Mullite Synthesized from Coal Gangue and γ-Al2O3

Article Preview

Abstract:

Mullite with puncheon-like grains was synthesized by sintering the mixtures of coal gangue and γ-Al2O3 at 1400 °C~1550 °C for 4 h. The phase and microstructure evolution of the mullitization behavior were investigated by XRD, SEM and EDS. Phases of the sintered specimens were mullite, corundum and cristobalite at 1400 °C to 1450 °C. Arise of temperature would enhance mullitization, and total consumption of cristobalite occurred from 1500 °C upward. The in-situ produced primary mullite from gangue upon heating may be seeds for the growth of enenly dispersed mullite puncheons. Specimen sintered at 1550 °C consists of puncheons with an aspect ratio of 2~4, regionally forming an interlocking structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-21

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Schneider, J. Schreuer, B. Hildmann, Structure and properties of mullite-A review, J. Eur. Ceram. Soc. 28 (2008) 329-344.

Google Scholar

[2] S.H. Hong, G.L. Messing, Development of textured mullite by templated grain growth, J. Am. Ceram. Soc. 82 (1999) 867-872.

DOI: 10.1111/j.1151-2916.1999.tb01847.x

Google Scholar

[3] S.H. Hong, W. Cermignani, G.L. Messing, Anisotropic grain growth in seeded and B2O3-doped diphasic mullite gels, J. Eur. Ceram. Soc. 16 (1996) 133-141.

DOI: 10.1016/0955-2219(95)00144-1

Google Scholar

[4] I. Regiani, W.L.E. Magalhães, D.P.F. De Souza, Nucleation and growth of mullite whiskers from lanthanum-doped aluminosilicate melts, J. Am. Ceram. Soc. 85 (2002) 232-238.

DOI: 10.1111/j.1151-2916.2002.tb00071.x

Google Scholar

[5] S.H. Hong, G.L. Messing, Anisotropic grain growth in diphase-gel-derived titania-doped mullite, J. Am. Ceram. Soc. 81 (1998) 1269-1277.

DOI: 10.1111/j.1151-2916.1998.tb02478.x

Google Scholar

[6] S.H. Li, H.Y. Du, A.R. Guo, Preparation of self-reinforcement of porous mullite ceramics through in situ synthesis of mullite whisker in flyash body, Ceram. Int. 38 (2012) 1027-1032.

DOI: 10.1016/j.ceramint.2011.08.026

Google Scholar

[7] J.H. Li, H.W. Ma, W.H Huang, Effect of V2O5 on the properties of mullite ceramics synthesized from high-aluminum fly ash and bauxite, J. Hazard. Mater. 166 (2009) 1535-1539.

DOI: 10.1016/j.jhazmat.2008.11.059

Google Scholar

[8] L.B. Kong, T.S. Zhang, J. Ma, Mullite phase formation in oxide mixtures in the presence of Y2O3, La2O3 and CeO2, J. Alloys Compd. 372 (2004) 290-299.

DOI: 10.1016/j.jallcom.2003.10.022

Google Scholar

[9] B.M. Kim, Y.K. Cho, S.Y. Yoon, Mullite whiskers derived from kaolin, Ceram. Int. 35 (2009) 579-583.

DOI: 10.1016/j.ceramint.2008.01.017

Google Scholar

[10] X.H. Yang, B. Huang, J.C. Shu, Research advance on resource utilization of coal gangue, Yunnan Chem. Technol. 38 (2011) 37-40.

Google Scholar

[11] Z.M. Bai, G.J. Li, Y. Jin, Development on applications of silicate solid wastes (coal gangue), J. Chin. Ceram. Soc. 38 (2010) 1357-1361.

Google Scholar

[12] C.Y. Chen, G.S. Lan, W.H. Tuan, Preparation of mullite by the reaction sintering of kaolinite and alumina, J. Eur. Ceram. Soc. 20 (2000) 2519-2525.

DOI: 10.1016/s0955-2219(00)00125-4

Google Scholar

[13] J.C. Huling, G.L. Messing, Hybrid gels for homoepitactic nucleation of mullite, J. Am. Ceram. Soc. 72 (1989) 1725-1729.

DOI: 10.1111/j.1151-2916.1989.tb06312.x

Google Scholar

[14] K.C. Liu, G. Thomas, Time-Temperature-Transformation Curves for Kaolinite-α-Alumina, J. Am. Ceram. Soc. 77 (1994) 1545-1552.

Google Scholar

[15] D. Papargyris, R.D. Cooke, Structure and mechanical properties of kaolin based ceramics, Brit. Ceram. Trans. 95 (1996) 107-120.

Google Scholar

[16] K.C. Liu, G. Thomas, A. Caballero, Mullite formation in kaolinite-α-alumina, Acta Metall. Mater. 42 (1994) 489-495.

DOI: 10.1016/0956-7151(94)90503-7

Google Scholar