[1]
S.K. Sahoo, S. Parveen, J. J Panda, The present and future of nanotechnology in human health care. Nanomedicine, 3 (2007) 20-31.
DOI: 10.1016/j.nano.2006.11.008
Google Scholar
[2]
M. Raffi, F. Hussain, T.M. Bhatti, J.I. Akhter, A. Hameed, M.M. Hasan, Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J. Mater Sci Technol., 24 (2008) 192-196.
Google Scholar
[3]
N.M. Franklin, N.J. Rogers, S.C. Apte, G.E. Batley, G.E. Gadd, P.S. Casey, Comparative toxicity of nanoparticulate ZnO, bulk ZnO and ZnCl2 to a freshwater microalgae (Pseudokirchneriella subcapitala): the importance of parrticle solubility. Env. Sci. Technol., 41 (2007).
DOI: 10.1021/es071445r
Google Scholar
[4]
Y. Liu, L. He, A. Mustapha, H. Li, Z.Q. Hu, M. Lin, Antibacterial acctivities of zinc oxide nanoparticles against Escherichia coli. J. Appl. Microbiol., 107 (2009) 1193-1201.
DOI: 10.1111/j.1365-2672.2009.04303.x
Google Scholar
[5]
J. Sawai, Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J. Microbiol. Methods, 54 (2003) 177-182.
DOI: 10.1016/s0167-7012(03)00037-x
Google Scholar
[6]
J. Sawai, T. Yoshikawa, Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J. Appl. Micro., 96 (2004) 803-809.
DOI: 10.1111/j.1365-2672.2004.02234.x
Google Scholar
[7]
M. Heinlaan, A. Ivask, I. Blinova, H.C. Dubourguier, A. Kahru, Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magma and Thamnocephalus platyurus. Chemosphere, 71 (2008) 1308-1316.
DOI: 10.1016/j.chemosphere.2007.11.047
Google Scholar
[8]
I. Blinova, A. Ivask, M. Mortimer, A. Kahru, Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Envion. Pollut., 158 (2010) 41-47.
DOI: 10.1016/j.envpol.2009.08.017
Google Scholar
[9]
S. Mahmud, One-dimensional growth of zinc oxide nanostructures from large micro-particles in a highly rapid synthesis. J. Alloys Compd., 509 (2011) 4035-4040.
DOI: 10.1016/j.jallcom.2011.01.013
Google Scholar
[10]
H. Kind, H. Yan, M. Law, B. Messer, P. Yang, Nanowire Ultraviolet Photodetectors and Optical Switches. Adv. Mater. 14 (2002) 158-160.
DOI: 10.1002/1521-4095(20020116)14:2<158::aid-adma158>3.0.co;2-w
Google Scholar
[11]
R.G. Singh, F. Singh, V. Kumar, R.M. Mehra, Growth kinetics of ZnO nanocrystallites: structural, optical and photoluminescence properties tuned by thermal annealing. Current Applied Physics, 11 (2011) 624-630.
DOI: 10.1016/j.cap.2010.10.013
Google Scholar
[12]
E. Burstein, Anomalous optical absorption limit in InSb. Phys. Rev, 93 (1954) 632.
DOI: 10.1103/physrev.93.632
Google Scholar
[13]
K.R. Raghupathi, R.T. Koodali, A.C. Manna, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 27 (2011) 4020-4028.
DOI: 10.1021/la104825u
Google Scholar
[14]
R. Brayner, R. Ferrari-iliou, N. Brivois, S. Djediat, M.F. Benedetti, F. Fievet, Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium, Nano letter, 6 (2006) 866-870.
DOI: 10.1021/nl052326h
Google Scholar