Optical Properties and Antibacterial Bioactivity of ZnO Nanopowder Annealed in Different Ambient

Article Preview

Abstract:

Nanomaterials have attracted much attention for their unique properties and promising performance compared to macroscopic materials. Nanotechnology refer to the cutting-edge approach of synthesis and modification of nanomaterials whose structures exhibit novel and improved physical, chemical, biological properties and functionality due to their nanoscaled size [1-2]. The ongoing revolution of the technology has imposed significant impact into several areas of biomedical research and engineering applications. Among the biomedical application include nanoparticle drug delivery, cell imaging, and cancer therapy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

324-328

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.K. Sahoo, S. Parveen, J. J Panda, The present and future of nanotechnology in human health care. Nanomedicine, 3 (2007) 20-31.

DOI: 10.1016/j.nano.2006.11.008

Google Scholar

[2] M. Raffi, F. Hussain, T.M. Bhatti, J.I. Akhter, A. Hameed, M.M. Hasan, Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J. Mater Sci Technol., 24 (2008) 192-196.

Google Scholar

[3] N.M. Franklin, N.J. Rogers, S.C. Apte, G.E. Batley, G.E. Gadd, P.S. Casey, Comparative toxicity of nanoparticulate ZnO, bulk ZnO and ZnCl2 to a freshwater microalgae (Pseudokirchneriella subcapitala): the importance of parrticle solubility. Env. Sci. Technol., 41 (2007).

DOI: 10.1021/es071445r

Google Scholar

[4] Y. Liu, L. He, A. Mustapha, H. Li, Z.Q. Hu, M. Lin, Antibacterial acctivities of zinc oxide nanoparticles against Escherichia coli. J. Appl. Microbiol., 107 (2009) 1193-1201.

DOI: 10.1111/j.1365-2672.2009.04303.x

Google Scholar

[5] J. Sawai, Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J. Microbiol. Methods, 54 (2003) 177-182.

DOI: 10.1016/s0167-7012(03)00037-x

Google Scholar

[6] J. Sawai, T. Yoshikawa, Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J. Appl. Micro., 96 (2004) 803-809.

DOI: 10.1111/j.1365-2672.2004.02234.x

Google Scholar

[7] M. Heinlaan, A. Ivask, I. Blinova, H.C. Dubourguier, A. Kahru, Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magma and Thamnocephalus platyurus. Chemosphere, 71 (2008) 1308-1316.

DOI: 10.1016/j.chemosphere.2007.11.047

Google Scholar

[8] I. Blinova, A. Ivask, M. Mortimer, A. Kahru, Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Envion. Pollut., 158 (2010) 41-47.

DOI: 10.1016/j.envpol.2009.08.017

Google Scholar

[9] S. Mahmud, One-dimensional growth of zinc oxide nanostructures from large micro-particles in a highly rapid synthesis. J. Alloys Compd., 509 (2011) 4035-4040.

DOI: 10.1016/j.jallcom.2011.01.013

Google Scholar

[10] H. Kind, H. Yan, M. Law, B. Messer, P. Yang, Nanowire Ultraviolet Photodetectors and Optical Switches. Adv. Mater. 14 (2002) 158-160.

DOI: 10.1002/1521-4095(20020116)14:2<158::aid-adma158>3.0.co;2-w

Google Scholar

[11] R.G. Singh, F. Singh, V. Kumar, R.M. Mehra, Growth kinetics of ZnO nanocrystallites: structural, optical and photoluminescence properties tuned by thermal annealing. Current Applied Physics, 11 (2011) 624-630.

DOI: 10.1016/j.cap.2010.10.013

Google Scholar

[12] E. Burstein, Anomalous optical absorption limit in InSb. Phys. Rev, 93 (1954) 632.

DOI: 10.1103/physrev.93.632

Google Scholar

[13] K.R. Raghupathi, R.T. Koodali, A.C. Manna, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 27 (2011) 4020-4028.

DOI: 10.1021/la104825u

Google Scholar

[14] R. Brayner, R. Ferrari-iliou, N. Brivois, S. Djediat, M.F. Benedetti, F. Fievet, Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium, Nano letter, 6 (2006) 866-870.

DOI: 10.1021/nl052326h

Google Scholar