Effect of Annealing Temperature on Surface Morphology of Lanthanum Phosphate (LaPO4) Nanostructures Thin Films

Article Preview

Abstract:

LaPO4 particles with different morphologies and sizes have been successfully synthesized via sol-gel spinned coating process. The aim of this paper is to investigate the effect of annealing on the morphology and formation of LaPO4 on thin films. Physical structural properties of LaPO4 was investigated using atomic force microscopy (AFM-XE100). EDS analysis was done to check on the formation of LaPO4.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

302-305

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Dong, Y. Liu, P. Yang, W. Wang, and J. Lin, ChemInform Abstract: Controlled Synthesis and Characterization of LaPO4, LaPO4: Ce3+ and LaPO4: Ce3+, Tb3+ by EDTA Assisted Hydrothermal Method, ChemInform, vol. 41, pp. no-no, (2010).

DOI: 10.1002/chin.201048014

Google Scholar

[2] S. Sankar and K. Warrier, Aqueous sol–gel synthesis of lanthanum phosphate nano rods starting from lanthanum chloride precursor, Journal of Sol-Gel Science and Technology, vol. 58, pp.195-200, (2011).

DOI: 10.1007/s10971-010-2377-4

Google Scholar

[3] K. Meyysamy, R. Karsten, K. Andreas, N. Sabine, H. Markus, Adv. Mater. 11 (1999) 840.

Google Scholar

[4] K. Riwotzki, H, Meyysamy, H. Schnablegger, A. Kornowski, M. Haase, Angew. Chem. Int. Ed. 40 (2001) 573.

DOI: 10.1002/1521-3773(20010202)40:3<573::aid-anie573>3.0.co;2-0

Google Scholar

[5] Y.J. Zhang, H.G. Guan. Mater. Res. Bull. 40 (2005) 1536.

Google Scholar

[6] X.Z. Xiao, B. Yan, Y.S. Song, Cryst. Growth Des. 9 (2009) 137.

Google Scholar

[7] R. Schmechel, M. Kennedy, H. Von Seggern, H. Winkler, M. Kolbe, R.A. Fischer, X.M. Li, A. Benker, M. Winterer, H. Hahn, J. Appl. Phys. 89 (2001) 1679.

DOI: 10.1063/1.1333033

Google Scholar

[8] Z. Hou, P. Yang, C. Li, L. Wang, H. Lian, Z. Quan, J. Lin, Chem. Mater. 20 (2008) 6686.

Google Scholar

[9] Z. Hou, C. Li, J. Yang, H. Lian, P. Yang, R. Chai, Z. Cheng, J. Lin, J. Mater. Chem. 19 (2009) 2737.

Google Scholar

[10] J. Yang, C. Li, Z. Cheng, X. Zhang, Z. Quan, C. Zhang, J. Lin, J. Phys. Chem. C 111 (2007) 18148.

Google Scholar

[11] Li L, Jiang WG, Pan HH, Xu XR, Tang YX, Ming JZ, Xu ZD, Tang RK (2007) J Phys Chem C 111: 4111-4115.

Google Scholar

[12] Chai ZL, Gao L, Wang C, Zhang HJ, Zheng RK, Webley PA, Wang HT (2009). New J Chem 33: 1657-1662.

Google Scholar

[13] YP, Xu AW, Song RQ, Zhang HX, You LP, Yu JC, Liu HQ (2003) J. Am Chem Soc 125: 16025-16034.

Google Scholar

[14] Wang RG, Pan W, Chen J, Fang MH, Cao ZZ, Luo YM (2003) Mater Chem Phys 79: 30-36.

Google Scholar

[15] Buissette V, Moreau M, Gacoin T, Boilot JP, Chane-Ching JY, Le Mercier T (2004) Chem Mater 16: 3767-3773.

DOI: 10.1021/cm049323a

Google Scholar

[16] Buehler G, Feldmann C (2006) Angew Chem Int Ed 45: 4864-4867.

Google Scholar

[17] Brown SS, Im HJ, Rondinone AJ, Dai S (2005) J Colloid Interface Sci 292: 127-132.

Google Scholar

[18] Rajesh K, Mukundan P, Pillai PK, Nair VR, Warrier KGK (2004) Chem Mater 16: 2700 2705.

Google Scholar

[19] Rajesh K, Shajesh P, Seidel O, Mukundan P, Warrier K G K. [J]. Advanced Functional Materials, 2007, 17(10): 1682-1690.

DOI: 10.1002/adfm.200600794

Google Scholar