Characterization of TiAlBN Nanocomposite Coating Deposited via Radio Frequency Magnetron Sputtering Using Single Hot-Pressed Target

Article Preview

Abstract:

TiAlBN coatings have been deposited at varying bias voltage of 0, -60, and-150 V by radio frequency (RF) magnetron sputtering technique. A single hot-pressed Ti-Al-BN target was used for the deposition process. With glancing angle X-ray diffraction analysis (GAXRD), the nanocrystalline (nc-) (Ti,Al)N phase was identified. In addition, the existence of BN and TiB2 amorphous (a-) phase were detected by X-ray photoelectron spectroscopy (XPS) analysis. Thus, the deposited TiAlBN coatings were confirmed as nc-(Ti,Al)N/a-BN/a-TiB2 nanocomposite. On the other hand, it was found that optimum bias voltage used in present study is-60 V where the deposited TiAlBN coating exhibits an excellent adhesion quality. The adhesion quality of the coatings deposited at-60V bias voltage is classified as HF 1 evaluated using the Rockwell-C adhesion test method (developed by the Union of German Engineers).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

298-301

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Zhang, D. Sun, Y. Fu, and H. Du: Surf. Coat. Technol. Vol. 167 (2003), pp.113-119.

Google Scholar

[2] S. Veprek, R.F. Zhang, M.G.J. Veprek-Heijman, S.H. Sheng, and A.S. Argon: Surf. Coat. Technol. Vol. 204 (2010), p.1898-(1906).

DOI: 10.1016/j.surfcoat.2009.09.033

Google Scholar

[3] C. Rebholz, M.A. Monclus, M.A. Baker, P.H. Mayrhofer, P.N. Gibson, A. Leyland, and A. Matthews: Surf. Coat. Technol. Vol. 201 (2007), pp.6078-6083.

DOI: 10.1016/j.surfcoat.2006.08.121

Google Scholar

[4] C. Rebholz, J.M. Schneider, A.A. Voevodin, J. Steinebrunner, C. Charitidis, S. Logothetidis, A. Leyland, and A. Matthews: Surf. Coat. Technol. Vol. 113 (1999), pp.126-133.

DOI: 10.1016/s0257-8972(98)00840-8

Google Scholar

[5] J. Morales-Hernandez, L. Garcia-Gonzalez, J. Munoz-Saldana, and F.J. Espinoza-Beltran: Vacuum Vol. 76 (2004), pp.161-164.

Google Scholar

[6] M.A. Baker, S. Klose, C. Rebholz, A. Leyland, and A. Matthews: Surf. Coat. Technol. Vol. 151-152 (2002), pp.338-343.

Google Scholar

[7] M.A. Baker, M.A. Monclus, C. Rebholz, P.N. Gibson, A. Leylang, and A. Matthews: Thin Solid Films Vol. 518 (2010), pp.4273-4280.

DOI: 10.1016/j.tsf.2009.12.109

Google Scholar

[8] D.V. Shtansky, K. Kaneko, Y. Ikuhara, and E.A. Levashov: Surf. Coat. Technol. Vol. 148 (2001), pp.206-215.

Google Scholar

[9] I. Zukerman, A. Raveh, Y. Shneor, R. Shneck, J.E. Klemberg-Saphieha, and L. Martinu: Surf. Coat. Technol. Vol. 201 (2007), pp.6161-6166.

DOI: 10.1016/j.surfcoat.2006.08.136

Google Scholar

[10] D.M. Mattox: Handbook of Physical Vapor Deposition (PVD) Processing: Second Edition (Elsevier, USA 2010).

DOI: 10.1016/b978-0-8155-2037-5.00018-6

Google Scholar

[11] S.Y. Tan, X.H. Zhang, X.J. Wu, F. Fang, J.Q. Jiang: Thin Solid Films Vol. 519 (2011), pp.2116-2120.

Google Scholar

[12] W. Heinke, A. Leyland, A. Matthews, G. Berg, C. Friedrich, E. Broszeit: Thin Solid Films Vol. 270 (1995), pp.431-438.

DOI: 10.1016/0040-6090(95)06934-8

Google Scholar

[13] U. Wahlstrom, L. Hultman, and J. -E. Sundgren: Thin Solid Films Vol. 235 (1993), pp.62-70.

Google Scholar