Characterization of Titanium Dioxide Nanopowder Synthesized by Sol Gel Grinding Method

Article Preview

Abstract:

In this study, TiO2 nanopowder was synthesized via a sol-gel grinding method. The effects of TiO2 precursor concentration of TiO2 nanopowder were investigated. The TiO2 nanopowder obtained were characterized using X-ray diffraction (XRD), Raman spectroscopy and field emission scanning electron microscopy (FESEM) for their structural properties. From the calculation of the crystallite size in XRD, the size of the nanoparticles obtained is 49.55 nm at the highest TiO2 precursor concentration. In contrast, at the lower concentration of 0.4 molar give the cryatallite size of 12.84 nm. Further, XRD and Raman spectrum results confirmed the TiO2 nanopowder obtain composed of only anatase phase. The FESEM micrographs of TiO2 nanopowder also were discussed in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

425-429

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.O. Regan, M. Graetzel, Nature 353 (1991) 737.

Google Scholar

[2] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95 (1995) 69.

Google Scholar

[3] G. Dagan, M. Tomkiewich, J. Phys. Chem. 97 (1993) 12651.

Google Scholar

[4] Md.I. Ahmad, S.S. Bhattacharya, C. Fasel, H. J Hahn, Nanosci. Nanotech. 9 (2009) 5572.

Google Scholar

[5] D. ravichandran, A.S. Bhalla and R. Roy, Mater. Let. 25 (1995) 161.

Google Scholar

[6] Z. Cui and H. Hahn, Nanostructures Mater. 1 (1992) 419.

Google Scholar

[7] M. R Mohammadi, M. C Cordero-Cabrera, D.J. Fray, M. Ghorbani, Sensor. Actuator. B. 120 (2006) 86.

Google Scholar

[8] S. K Sharma, M. Vishwas, K. N Rao, S. Mohan, D.S. Reddy, K.V.A. Gowda, J. Alloys Compd. 471 (2009) 244.

Google Scholar

[9] G. Pecchi, P. Reyes, P. Sanhueza, J. Villasenor, Chemosphere 43(2001) 141.

Google Scholar

[10] Y. Bessekhouad, D. Robert, J.V. Webber, J. Photochem. Photobio. A 157 (2003) 47.

Google Scholar

[11] M.A. Behnajady, H. Eskandarloo, N. Modirshahla, M. Shokri, Desalination 278 (2011) 10.

Google Scholar

[12] Kuznetsova, I. N. Blaskov, V. Stambolova, I. Znaidi, L. Kanaev, A. Mater. Lett. 59 (2005) 3820.

Google Scholar

[13] J.H. Lee, Y.S. Yang, Mater. Chem. Phys. 93 (2005) 237.

Google Scholar

[14] H. Zhang, J.F. Banfield, Chem. Mater. 17 (2005) 3421.

Google Scholar

[15] R.L. Penn, J.F. Banfield, Geochim. Cosmochim. Acta 63 (1999) 1549.

Google Scholar

[16] D. Vorkapic, T.J. Matsoukas, Colloid Interface Sci. 214 (1999) 283.

Google Scholar

[17] J. Kim, K. Chan Song, S.E. Pratsinis, J. Nanoparticle Res. 2 (2000) 419.

Google Scholar

[18] C. Burda, X. Chen, R. Narayanan, M. A El-Sayed, Chem. ReV. 105 (2005) 1025.

Google Scholar

[19] V. Buchholtz, J.A. Freund, T. Pöschel, Schüttgut, TransTech Publ. 6 (2000) 11.

Google Scholar

[20] B.D. Cullity, Elements of X-ray Diffraction, Addison Wesley Pub, Menlo Park, CA, USA, (1978).

Google Scholar

[21] Manjunatha Pattabi and Saraswathi Amma B, Journal of New Materials for Electrochemical Systems 10 (2007) 43.

Google Scholar

[22] T. Ohsaka, J. Phys. Soc. Jpn. 48 (1980) 1661.

Google Scholar

[23] J. C Parker and R. W Siegel, Appl. Phys. Lett. 57 (1990) 943.

Google Scholar

[24] B. Schreder, C. Dem, M. Schmitt, A. Materny, W. Kiefer, U. Winkler, E. Umbach, J. Raman Spectrosc. 34 (2003) 100.

DOI: 10.1002/jrs.959

Google Scholar

[25] S. Hayashi, H. Kanamori, Phys. Rev. B 26 (1982) 7079.

Google Scholar

[26] D. Bersani, P.P. Lottici and X.Z. Ding, Appl. Phys. Lett. (1998) 73.

Google Scholar

[27] I.H. Campbell, P.M. Fauchet, Solid State Commun. 58 (1986) 739.

Google Scholar

[28] C.Y. Xu, P.X. Zhang, L. Yan, J. Raman Spectrosc. 32 (2001) 862.

Google Scholar

[29] R.G. Schlecht, H.K. Bo¨ckelmann, Phys. Rev. Lett. 31 (1973) 930.

Google Scholar

[30] Hyun Chul Choi, Young Mee Jung, Seung Bin Kim, Vibrational Spectroscopy 37 (2005), 33.

Google Scholar