Effects of Cobalt Addition and Temperature on Microstructure and Density of W-25Cu Composites Prepared via Liquid Infiltration

Article Preview

Abstract:

In this study, the effect of Co and sintering temperature on microstructure of W-25Cu composites prepared via copper melt infiltration has been investigated. The concentration of Co addition used ranged from 0.5 to 3wt. %. The infiltration temperatures were performed at 1150°C and 1250°C for 2 hr under vacuum. The microstructure and sintering density of W-25Cu composites are discussed. Results indicated that, the relative density (RD) and microstructure of W-25wt. % Cu were greatly affected by the addition of low Co concentration and sintering temperature. The concentration of 3 wt. % Co to tungsten-copper compact and infiltration temperature of 1250°C give high sintering density of 98.6% theoretical density (TD). The concentration of Co and infiltrating temperature have strong effects on the densification of W-Cu composite materials. The sintered compact microstructures and density were obtained using scanning electron microscope (SEM) coupled with EDX and Archimedes technique respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

430-435

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Johnson, R. German: Metall. Mater. Trans. A Vol. 24 (1993), p.2369.

Google Scholar

[2] D. Li, Z. Liu, Y. Yu, E. Wang: Int. J. Refract. Met. H. Vol. 26 (2008), p.286.

Google Scholar

[3] J. Fan, T. Liu, S. Zhu, Y. Han: Int. J. Refract. Met. H. Vol. 30 (2012), p.33.

Google Scholar

[4] S.H. Hong, B.K. Kim, Z.A. Munir: Mater. Sci. Eng. A Vol. 405 (2005), p.325.

Google Scholar

[5] G. Li, L. Lu, M. Lai: J. Mater. Process. Tech. Vol. 63 (1997), p.286.

Google Scholar

[6] S.K. Joo, S.W. Lee, T.H. Ihn: Metall. Mater. Trans. A Vol. 25 (1994), p.1575.

Google Scholar

[7] M.K. Yoo, J.K. Park, K.T. Hong, J. Choi, U.S. Patent 5, 963, 773. (1999).

Google Scholar

[8] P. Yu, M. Qian, L. Li, G. Schaffer: Acta mater. Vol. 58 (2010), p.3790.

Google Scholar

[9] A.G. Hamidi, H. Arabi, S. Rastegari: Int. J. Refract. Met. H. Vol. 29 (2011), p.538.

Google Scholar

[10] Y.W. Zhao, Y.J. Wang, H.X. Peng, Y. Zhou: Int. J. Refract. Met. H. Vol. 30 (2012), p.196.

Google Scholar

[11] P. Chen, G. Luo, M. Li, Q. Shen, L. Zhang: Mater. Design Vol. 36 (2012), p.108.

Google Scholar

[12] K.S. Mohammad, A. Rahmat, A.B. Ismail: J. Alloy. Compd. Vol. 482 (2009), p.447.

Google Scholar

[13] H. Hayden, J. Brophy: J. Electrochem. Soc. Vol. 110 (1963), p.805.

Google Scholar

[14] G. Samsonov, V. Yakovlev: Powder Metall. Met. C+. Vol. 8 (1969), p.804.

Google Scholar

[15] M. Ahangarkani, S. Borgi, H. Abbaszadeh, A. Rahmani, K. Zangeneh-Madar: Int. J. Refract. Met. H. Vol. 32 (2012), p.39.

Google Scholar