Misfit Dislocation Reduction of InxGa1-xN/GaN Heteroepitaxy Using Graded Layer

Article Preview

Abstract:

The performances of heterostructural devices are often limited by misfit dislocation. In this paper, a theoretical approach for misfit dislocation reduction of wurtzite InxGa1-xN/GaN is presented. The linear and exponential grading techniques have been modeled for the reduction of dislocation. An energy balance model has been taken into consideration and modified for wurtzite structure to evaluate the misfit dislocation density. The value of misfit dislocation has been reduced from 7.112×1010 cm-2 to 6.19×106 cm-2 and 7.039×1010 cm-2 to 6.121×106 cm-2 at the plane 1/3<> {} and 1/3<>{} respectively for linear grading. In case of exponential grading the dislocation density has been reduced to 2.762×105 cm-2 for both slip systems. Because of tapered grading coefficient a tapered dislocation profile has been reported in case of exponential grading technique. Finally, a comparative study has been shown among without graded, linear and exponential grading.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

500-503

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Akasaki, H. Amano, N. Koide, M. Kotaki, K. Manabe, Conductivity control of GaN and fabrication of UV/blue GaN light emitting devices, Physica B, 185 (1993) 428.

DOI: 10.1016/0921-4526(93)90274-a

Google Scholar

[2] S. Nakamura, M. Senoh, and T. Mukai, P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes, Jpn. J. Appl. Phys., 32, (1993 ) L8.

DOI: 10.1143/jjap.32.l8

Google Scholar

[3] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, Jpn. J. Appl. Phys. 5 (1996) L74.

DOI: 10.1143/jjap.35.l74

Google Scholar

[4] M Haeberlen, D Zhu, C McAleese, MJ Kappers and CJ Humphreys, Journal of Physics: Conference Series 209 (2010) 012017.

Google Scholar

[5] M. R. Islam, Y. Ohmura, A. Hashimoto, A. Yamamoto, K. Kinoshita, and Y. Koji: Physica Status Solidi (c), 2010, 7-8, (2097).

Google Scholar

[6] S. Srinivasan, L. Geng, R. Liu, and F. A. Ponce, Y. Narukawa and S. Tanaka Applied Physics B Letters, 83, 5187.

Google Scholar

[7] Matthews, J. W. and Blakeslee, A. E., J. Crystal Growth , Vol. 27, December 1974, p.118–125.

Google Scholar

[8] D. Holec, , P.M.F.J. Costa, M.J. Kappers, C.J. Humphreys, Journal of Crystal GrowthVolume 303, May 2007, Pages 314–317.

Google Scholar

[9] E.A. Fitzgerald, Y. -H. Xie, D. Monroe, P.J. Silverman, J.M. Kuo, A.R. Kortan, F.A. Thiel, and B.W. Weir, J. Vac. Sci. Technol. B 10, 1807(1992).

Google Scholar

[10] D. Sidoti, S. Xhurxhi, T. Kujofsa, S. Cheruku, J. Reed, B. Bertoli, P.B. Rago, E.N. Suarez, F.C. Jain, and J.E. Ayers, Journal of Electronic Materials, Vol. 39, No. 8, (2010).

DOI: 10.1007/s11664-010-1165-9

Google Scholar

[11] Hu, S. M. J. Appl. Phys. , Vol. 69, No. 11, June 1991, p.7901–7903.

Google Scholar