Co2 Solubility in Silica Supported [hmim][Tf2N]

Article Preview

Abstract:

Solid supported ionic liquids can be used to overcome the high viscosity issue of ionic liquids and help increase the efficiency of CO2 removal. In this research, [hmi [Tf2 was impregnated into porous silica dioxide (SiO2) and characterized using Porous and Surface Analyzer, Thermogravimetric Analysis (TGA) and Spectroscopy RAMAN. The CO2 solubility was measured at different pressure at room temperature. The mole fraction of CO2 captured was increased as the pressure increased, and the highest mole fraction was at 40 bar. The mole fraction of CO2 captured at 40 bar for SiO2-[hmi [Tf2 was 0.812 which was higher compared to pure [hmi [Tf2, with mole fraction of 0.650. Henrys Law Constant (KH) was higher for SiO2-[hmi [Tf2 with 26.8±5.2 bar while for [hmi [Tf2, the KH was 35.4±3.3 bar.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

509-513

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Li, J.G. Martinek, J.L. Falconer, R.D. Noble, and T.Q. Gardner: Industrial and Engineering Chemistry Research Vol. 44 (2005), pp.3220-3228.

Google Scholar

[2] L. M. Galan Sanchez, G. W. Meindersma, and A. B. de Haan: Chemical Engineering and Research Design Vol. 85 (2007), pp.31-39.

Google Scholar

[3] L. M. Galan Sanchez, G. W. Meindersma, and A. B. de Haan: Chemical Engineering Journal Vol. 166 (2011), pp.1104-1115.

Google Scholar

[4] W. Miao, and T. K. Chan: Accounts of Chemical Research Vol. 39 (2006), pp.897-908.

Google Scholar

[5] J. L. Anderson, J. K. Dixon, and J. F. Brennecke: Accounts of Chemical Research Vol. 40 (2007), pp.1208-1216.

Google Scholar

[6] J. L. Anthony, J. L. Anderson, E. J. Maginn, and J. F. Brennecke: Journal of Physical Chemistry B Vol. 109 (2005), pp.6366-6374.

Google Scholar

[7] A. Riisager, R. Fehrmann, M. Haumann, and P. Wasserscheid: Topics in Catalysis Vol. 40 (2006), pp.91-102.

Google Scholar

[8] K. N. Marsh, J. A. Boxall, and R. Lichtenthaler: Fluid Phase Equilibria Vol. 219 (2004), pp.93-98.

DOI: 10.1016/j.fluid.2004.02.003

Google Scholar

[9] S. Park, and R. J. Kazlauskas: Current Opinion in Biotechnology Vol. 14 (2003), pp.432-437.

Google Scholar

[10] J. E. Bara, E. S. Hatakeyama, D. L. Gin, and R. D. Noble: Polymers for Advanced Technology Vol. 19 (2008), p.1415–1420.

Google Scholar

[11] E. Kuhlmann, M. Haumann, A. Jess, A. Seeberger, and P. Wasserscheid: Chemistry and Sustainability Energy and Materials Vol. 2 (2009), pp.969-977.

Google Scholar

[12] M. J. Muldoon, J. L. Anderson, J. K. Dixon, S. N. V. K. Aki, and J. F. Brennecke: Journal of Chemical Physic B Vol. 111 (2007), p.9001–9009.

Google Scholar

[13] E. J. Beckman: Chemical Communications (2004), p.1885–1888.

Google Scholar

[14] T. Sarbu, T. J. Styranec, and E. J. Beckman: Industrial & Engineering Chemistry Research Vol. 39 (2000), p.4678–4683.

Google Scholar

[15] G. Hong, J. Jacquemin, M. Deetlefs, C. Hardacre, P. Husson, and M. F. C. Gomes: Fluid Phase Equilibria Vol. 257 (2007), pp.27-34.

DOI: 10.1016/j.fluid.2007.05.002

Google Scholar

[16] M.L. Gray, K.J. Champagne, D. Fauth, J.P. Baltrus, and Henry Pennline: International Journal of Greenhouse Gas Control Vol. 2 (2008), pp.3-8.

Google Scholar

[17] R. M. Silverstein, F. X. Webster, and D. J. Kiemle, in: Spectrometric Identification of Organic Compounds, 7th Edition, chapter, 2, John Wiley & Sons, Inc., United States of America (2005).

Google Scholar