Graft Copolymerization of Acrylamide onto Polyester-Cotton Blended Fabric by Using Potassium Permanganate Redox System

Article Preview

Abstract:

The graft copolymerization of acrylamide onto polyester-cotton blended (PCB) fabric by using potassium permanganate (KMnO4) redox system was carried out. Effects of various parameters, such as concentration of monomer and initiator, reaction time and temperature on grafting were studied. The grafting percentage increased significantly with the increase of the concentration of acrylamide up to 1 mol/L and decreased after that. The graft yields increased steply with the increase of reaction time up to 3h and then increased progressively. The rate of grafting was also dependent on reaction temperature, it increased with the temperature up to 60°C, then the rate of increase gradually slowed down. The chemical structure of grafted surface of the PCB fabric was characterized by infrared (IR) spectroscopy and scanning electron microscope. The fire performance was investigated by the LOI and the vertical flammability tests, and the results indicate that the grafting treatment could improve the flame retardancy. Thermal behavior of grafted fabric samples was evaluated by Thermogravimetric (TG) and differential thermogravimetric (DTG).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

205-211

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.P. Neumeyer, J.I. Wadsworth, N.B. Knoepfler and C.H. Mack: ThermochinicaActa, Vol. 16 (1976) No.2, p.133.

Google Scholar

[2] E. Lecoeur, I. Vroman, S. Bourbigot, T.M. Lam and R. Delobel: Polymer Degradation and Stability, Vol. 74 (2001) No.3, p.487.

DOI: 10.1016/s0141-3910(01)00172-0

Google Scholar

[3] F. Lessan, M. Montazer and M.B. Moghadam: ThermochimicaActa, Vol. 520 (2011) No. 1-2, p.48.

Google Scholar

[4] W. Wu and C.Q. Yang: Polymer Degradation and Stability, Vol. 92 (2007) No.3, p.363.

Google Scholar

[5] S. Gaan and G. Sun: Polymer Degradation and Stability, Vol. 92 (2007) No.6, p.968.

Google Scholar

[6] C.Q. Yang and Q.L. He: Journal of Analytical and Applied Pyrolysis, Vol. 91 (2011) No.1, p.125.

Google Scholar

[7] H. Yang and C.Q. Yang: Polymer Degradation and Stability, Vol. 88 (2005) No.3, p.363.

Google Scholar

[8] G. Huang: Materials and Design, Vol. 30 (2009) No.10, p.4324.

Google Scholar

[9] A.R. Horrocks: Polymer Degradation and Stability, Vol. 96 (2011), p.377.

Google Scholar

[10] V. Besshaposhnikova, T. Kulikava, T. Nikitina, O. Grishina and L. Panova: Fibre Chemistry, Vol. 38 (2006) No.1, p.46.

Google Scholar

[11] O. Duticova, N. Zubokova, N. Butylkina, N. Konstantinova and Y. Naganovskii: Fibre Chemistry, Vol. 37 (2005) No.3, p.193.

Google Scholar

[12] Y. Strekalova, N. Zubkova, N. Konstantinova and Z. Kozinda: Fibre Chemistry, Vol. 35 (2003) No.1, p.43.

Google Scholar

[13] S. Hribernik, M.S. Smole, K.S. Kleinschek, M. Bele, J. Jamnik and M. Gaberscek: Polymer Degradation and Stability, Vol. 92 (2007) No.11, p.1957.

DOI: 10.1016/j.polymdegradstab.2007.08.010

Google Scholar

[14] W. Xing, G. Jie, L. Song, S. Hu, X. Lv, X. Wang and Y. Hu: ThermochimicaActa, Vol. 513 (2011) No.1-2, p.75.

Google Scholar

[15] S. Giraud, S. Bourbigot, M. Rochery, I. Vroman, L. Tighzert and R. Delobel: Polymer Degradation and Stability, Vol. 77 (2002) No.2, p.285.

DOI: 10.1016/s0141-3910(02)00063-0

Google Scholar

[16] S. Giraud, S. Bourbigot, M. Rochery, I. Vroman , L. Tighzert, R. Delobel and F. Poutch: Polymer Degradation and Stability, Vol. 88 (2005) No.1, p.106.

DOI: 10.1016/j.polymdegradstab.2004.01.028

Google Scholar

[17] M.J. Tsafack and J.L. evalois-Grützmacher: Surface and Coatings Technology, Vol. 200 (2006) No.11, p.3503.

Google Scholar

[18] J.H. Koo, W. Wootan, W.K. Chow, H.W. AuYeung and S. Venumbaka: ACS Symposium Series, Vol. 797 (2001) No.28, p.361.

Google Scholar

[19] S. Duquesnea, S. Magnetb, C. Jamaa and R. Delobelc: Surface and Coatings Technology, Vol. 180-181 (2004), p.302.

Google Scholar

[20] J.W. Gu, G.C. Zhang, S.L. Dong, Q.Y. Zhang and J. Kong: Surface and Coatings Technology, Vol. 201 (2007) No.18, p.7835.

Google Scholar

[21] C.Q. Yang and W. Wu: Polymer Degradation and Stability, Vol. 91 (2006) No.11, p.2541.

Google Scholar

[22] H. Yang, C.Q. Yang and Q. He: Polymer Degradation and Stability, Vol. 94 (2009) No.6, p.1023.

Google Scholar

[23] I. Kaur and S.K. Verma: Surface and Coatings Technology, Vol. 205 (2010) No.7, p.2082.

Google Scholar

[24] M.J. Tsafack and J. Levalois-Grutzmacher: Surface and Coatings Technology, Vol. 201 (2006) No.6, p.2599.

Google Scholar

[25] A.Y. Kulkarni and P.C. Meha: Journal of Applied Polymer Science, Vol. 12 (1968) No.6, p.1321.

Google Scholar

[26] P. Lepoutre and S.H. Hui: Journal of Applied Polymer Science, Vol. 19 (1975) No. 5, p.1257.

Google Scholar

[27] M.J. Uddin, F. Cesano, D. Scarano, F. Bonino, G. Agostini, G. Spoto, S. Bordiga and A. Zecchina: Journal of Photochemistry and Photobiology A: Chemistry, Vol. 199 (2008) No.1, p.64.

DOI: 10.1016/j.jphotochem.2008.05.004

Google Scholar

[28] B. Gupta and N. Anjum: Journal of Applied Polymer Science, Vol. 82 (2001) No.11, p.2629.

Google Scholar