Crash Energy Absorption of Braided Composite Tubes and its Application in Vehicle Passive Safety

Article Preview

Abstract:

Braided composite tubular structures are of interest as viable energy absorbing components to improve vehicle passive safety. Unfortunately, there are many difficulties in predicting the crash response of braided composite tubes. In this study, a progressive failure model for braided composite materials, which had been implemented as a user material model in ABAQUS/Explicit, was used to simulate the axial crash response of braided composite tubes. It was shown that the model adequately captured the failure characteristics (such as matrix cracking, fiber fracturing and delamination) and energy absorption of braided composite tubes under axial compression. In addition, the simulation results show that braided composites have higher energy absorption performance compared to traditional metals.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

659-671

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Beardmore, C. F. Johnson: Compos Sci Technol. Vol. 26 (1986), p.251

Google Scholar

[2] D. Hull: Compos Sci Technol. Vol. 40 (1991), p.377

Google Scholar

[3] G. L. Farley, R. M. Jones: J Compos Mater. Vol. 26 (1992) p.37

Google Scholar

[4] S. S. Cheon, D. G. Lee, K. S. Jeong: Compos Struct. Vol. 38 (1997) p.229

Google Scholar

[5] H. Hamada, T. Nakatani, A. Nakai, V. Agaram: Compos Sci Technol. Vol. 59 (1999) p.1881

Google Scholar

[6] T. S. Lim, D. G. Lee: Compos Struct. Vol. 56(2002) p.211

Google Scholar

[7] A. K. Pickett, M. R. C. Fouinneteau: Compos Pt A-Appl Sci Manuf. Vol. 37 (2006) p.368

Google Scholar

[8] S. J. Beard, F. K. Chang: J Thermoplast Compos Mater. Vol. 15 (2002) p.3

Google Scholar

[9] S. J. Beard, F. K. Chang: Int J Crashworthiness Vol. 7 (2002) p.191

Google Scholar

[10] S. J. Beard: Energy absorption of braided composite tubes (PhD thesis, Stanford University 2001)

Google Scholar

[11] N. D. Flesher, F. K. Chang, N. R. Janapala: J Compos Mater. Vol. 45 (2011) p.853

Google Scholar

[12] N. D. Flesher, F. K. Chang, N. R. Janapala, J. M. Starbuck: J Compos Mater. Vol. 45 (2011) p.867

Google Scholar

[13] N. D. Flesher: Crash energy absorption of braided composite tubes (PhD thesis, Stanford University 2005)

Google Scholar

[14] L. Catejon, A. Miravete, J. Cuartero: Mech Compos Mater Struct. Vol. 8 (2001) p.219

Google Scholar

[15] C. J. McGregor, R. Vaziri, A. Poursartip, X. R. Xiao: Compos Pt A-Appl Sci Manuf. Vol. 38 (2007) p.2247

Google Scholar

[16] C. J. McGregor, R. Vaziri, X. R. Xiao: Int J Impact Eng. Vol. 37 (2010) p.662

Google Scholar

[17] X. R. Xiao, M. E. Botkin, N. L. Johnson: Thin-Walled Struct. Vol. 47 (2009) pp.740-749.

Google Scholar

[18] X. R. Xiao, C. J. McGregor, R. Vaziri, A. Poursartip: Int J Impact Eng. Vol. 36 (2009) p.711

Google Scholar

[19] R. A. Naik: J Compos Mater. Vol. 29 (1995) p.2334

Google Scholar

[20] T. Z. Blazynski: Materials at high strain rates (Elsevier Applied Science, London 1987)

Google Scholar

[21] P. Zhang, L. J. Gui, Z. J. Fan: J Reinf Plast Compos. Vol. 28 (2009) p. (1903)

Google Scholar

[22] S. V. Thiruppukuzhi, C. T. Sun: Compos Sci Technol. Vol. 61 (2001) p.1

Google Scholar

[23] A. Needleman: J Appl Mech. Vol. 54 (1987) p.525

Google Scholar

[24] E. D. Reedy, F. J. Mello, T. R. Guess: J Compos Mater. Vol. 31 (1997) p.812

Google Scholar