Effects of A-Site Equivalence and Non-Equivalence Substitution on Structure and Electric Properties of K0.5Na0.5NbO3 Lead-Free Piezoelectric Ceramics

Article Preview

Abstract:

For Na0.5K0.5NbO3(KNN)-based lead-free piezoelectric ceramics, an important phenomenon was found that the piezoelectric properties can be improved remarkably for equivalence substitution while it can’t be improved remarkably for non-equivalence substitution. To find out the real reason for this phenomenon, Li+ and La3+ were used to modify KNN lead-free piezoelectric ceramics by conventional sintering technique. The relaxor characteristic was detected for La3+ modified KNN lead-free piezoelectric ceramics, and this caused low piezoelectric properties. However, the relaxor characteristic can not be detected for Li+ modified KNN lead-free piezoelectric ceramics, and the piezoelectric properties is higher than that of La3+ modified KNN lead-free piezoelectric ceramics. Accordingly, the relaxor characteristic has important effect on structure and electric properties. The results show that equivalence and non-equivalence substitution have important and different effect on structure and performance of KNN ceramics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

687-693

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications, second ed., John Wiley, Chichester, (2003).

Google Scholar

[2] R. Guo, L.E. Cross, S.E. Park, B. Noheda, D.E. Cox and G. Shirane, "Origin of the High Piezoelectric Response in PbZr1-xTixO3," Phys. Rev. Lett., 84, 5423(2000).

Google Scholar

[3] A.K. Singh, D. Pandey, "Evidence for MB and MC phases in the morphotropic phase boundary region of (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3: A Rietveld study," Phys. Rev. B.,67, 064102(2003).

Google Scholar

[4] Y. Saito, H. Takao and T Tani, "Lead-free piezoelectric,"Nature, 84, 432(2004).

Google Scholar

[5] H. L. Du, W. C. Zhou and F. Luo, "High Tm lead-free relaxor ferroelectrics with broad temperature usage range: 0.04BiScO3-0.96(K0.5Na0.5)NbO3," J. Appl. Phys., 104, 044104 (2008).

DOI: 10.1063/1.2969773

Google Scholar

[6] S. J. Zhang, R. Xia and H. Hao, "Mitigation of thermal and fatigue behavior in K0.5Na0.5NbO3-based lead free piezoceramics,"Appl. Phys. Lett., 92, 152904 (2008).

Google Scholar

[7] E. Li, R. Suzuki and T. Hoshina, "Dielectric, piezoelectric, and electromechanical phenomena in (K0.5Na0.5)NbO3–LiNbO3–BiFeO3–SrTiO3 ceramics," Appl. Phys. Lett., 94, 132903 (2009)

DOI: 10.1063/1.3112564

Google Scholar

[8] H. L. Du and F. Luo, "Phase structure, microstructure, and electrical properties of bismuth modified potassium-sodium niobium lead-free ceramics,"J. Appl. Phys., 102, 054102 (2007).

DOI: 10.1063/1.2775997

Google Scholar

[9] L. Wu, J. L. Zhang, C. L. Wang, and J. C. Li, "Influence of compositional ratio K/Na on physical properties in (KxNa1-x)NbO3 ceramics," J. Appl. Phys. 103, 084116 (2008).

DOI: 10.1063/1.2907866

Google Scholar

[10] J. G. Wu, D. Q. Xiao and Y. Y. Wang,"Improved temperature stability of CaTiO3-modified [(K0.5Na0.5)0.96Li0.04](Nb0.91Sb0.05Ta0.04)O3 lead-free piezoelectric ceramics," J Appl. Phys., 104, 024102(2008).

DOI: 10.1063/1.2956390

Google Scholar

[11] Y. F. Chang, Z. P.Yang and D. F. Ma, "Phase transitional behavior, microstructure, and electrical properties in Ta-modified [(K0.458Na0.542)0.96Li0.04]NbO3 lead-free piezoelectric ceramics," J. Appl. Phys., 104, 024109 (2008).

DOI: 10.1063/1.2957591

Google Scholar

[12] C. Lei and Z. G. Ye, "Lead-free piezoelectric ceramics derived from the K0.5Na0.5NbO3–AgNbO3 solid solution system,"Appl. Phys. Lett., 93, 042901 (2008).

DOI: 10.1063/1.2956410

Google Scholar

[13] S. J. Zhang, R. Xia and T. R. Shrout, "Lead-free piezoelectric ceramics vs. PZT?," J Electroceramics.,19,251(2007).

DOI: 10.1007/s10832-007-9056-z

Google Scholar

[14] Y. Dai, X. Zhang and G. Zhou, "Phase transitional behavior in K0.5Na0.5NbO3–– LiTaO3 ceramics," Appl. Phys. Lett., 90, 262903(2007).

Google Scholar

[15] E. K. Akdogan, K. Kerman and M. Abazari, "Origins of high piezoelectric activity in (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.10, Sb0.06)O3," Appl. Phys. Lett.,92, 112908(2008).

Google Scholar

[16] H. M. Zhang, J. B. Zhao, S. B. Qu, Zhuo Xu, "Effect of A-site Non-stoichiometry on polarization degree of K0.5Na0.5NbO3 lead-free piezoelectric ceramics" Journal of Air Force engineering university (nature science edition)., Vol. 13 (2012), p.91,in Chinese.

Google Scholar

[17] W. Cochran, "Crystal stablity and the theory of ferroelectricity," Adv.Phys., 9, 387(1960).

Google Scholar

[18] K. Uchino and S. Nomura, "Critical exponents of the dielectric constants in diffused-phase-transition crystals," Ferroelectr. Lett. Sect., 44, 55(1982).

DOI: 10.1080/07315178208201875

Google Scholar

[19] C. A. Randal, A. S. Bhalla and T. R. Shrout. "Classification and consequences of complex lead perovskite ferroelectrics with regard to B-site cation order," J. Mater. Res., 5, 4(1990).

DOI: 10.1557/jmr.1990.0829

Google Scholar

[20] Z. G. Ye, "Relaxor Ferroelectric Complex Perovskites: Structure, Properties and Phase Transitions," Key Eng. Mater., 155,81(1998).

DOI: 10.4028/www.scientific.net/kem.155-156.81

Google Scholar