Density Functional Theory Calculation of Properties of Point Defects in δ-Plutonium

Article Preview

Abstract:

Local density approximation (LDA) +U within the framework of density functional theory (DFT) was used to study the properties of vacancy and self-interstitial atom (SIA) in δ-Pu. The results show that mono-vacancy, di-vacancy and tri-vacancy existing in δ-Pu shift rightward the f shell peak of the projected density of states (PDOS), the peak values of mono-vacancy and di-vacancy decrease, while the peak value of tri-vacancy increases. The saddle point during vacancy migration shifts leftward the f shell peak of PDOS, and the peak value decreases. The octahedral SIA, the tetrahedral SIA, the split SIA shift leftward the f shell peak of PDOS, and the peak values decreases. Finally, the recombination behavior of vacancy and SIA were studied at both the spin-restricted and the spin-unrestricted level, SIA migrates to vacancy site, and exhibits a tendency to forming the perfect fcc structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

672-677

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.W. Chung, S. R. Thompson, C. H. Woods, et al. J. Nucl. Mater. Vol. 355 (2006), p.142

Google Scholar

[2] V. Dremov, P. Sapozhnikov, A. Kutepov. Phys. Rev. Vol . B 77 (2008), p.224306

Google Scholar

[3] A. J. Schwartz. J. Alloy. Compd. Vol. 444–445 (2007), p.4

Google Scholar

[4] B.Y. Ao, X.L. Wang, W. Y. Hu, et al. J. Alloy. Compd. Vol. 444–445 (2007), p.300

Google Scholar

[5] M.J. Caturla, N. Soneda, T. Diaz de la Rubia, M. Fluss. J. Nucl. Mater. Vol. 351 (2006), p.78

Google Scholar

[6] M. J. Caturla, T. Diaz de la Rubia, M. Fluss. J. Nucl. Mater. Vol. 323 (2003), p.163

Google Scholar

[7] B.W. Chung, S.R. Thompson, K.E. Lema, et al. J. Nucl. Mater. Vol. 385 (2009), p.91

Google Scholar

[8] P. Söderlind, J. M. Wills, B. Johansson, and O. Eriksson, Phys. Rev. Vol . B 55 (1997), p. (1997)

Google Scholar

[9] P. Söderlind, Europhys. Lett. Vol. 55 (2001), p.525

Google Scholar

[10] A. Landa, P. Söderlind, and A. Ruban, J. Phys.: Condens. Matter Vol. 15 (2003), p. L371

Google Scholar

[11] P. Söderlind and B. Sadigh, Phys. Rev. Lett. Vol. 92 (2004), 185701

Google Scholar

[12] P. Söderlind, Phys. Rev. Vol . B 66 (2002), p.085113

Google Scholar

[13] P. Söderlind, A. Landa, B. Sadigh. Phys. Rev. Vol . B 66 (2002), p.205109

Google Scholar

[14] G. Jomard, B. Amadon, F. Bottin, and M. Torrent. Phys. Rev. Vol . B 78 (2008) p.075125

Google Scholar

[15] D. A. Andersson, J. Lezama, B. P. Uberuaga. Phys. Rev. Vol . B 79 (2009), p.024110

Google Scholar

[16] B. Sun, P. Zhang and X.-G. Zhao. J. Chem. Phys. Vol. 128 (2008), p.084705

Google Scholar

[17] L. Berlu, G. Jomard, G. Rosa, P. Faure. J. Nucl. Mater. Vol. 372 (2008) p.171

Google Scholar

[18] L. V. Pourovskii, G. Kotliar, M. I. Katsnelson, et al. Phys. Rev. Vol . B 75 (2007) p.235107

Google Scholar

[19] M. J. Fluss, B. D. Wirth, M. Wall, et al., J. Alloy Compd. Vol. 368 (2004) p.62

Google Scholar

[20] B. P. Uberuaga, S. M. Valone, M. I. Baskes. J. Alloy. Compd. Vol. 444–445 (2007) p.314

Google Scholar

[21] L. F. Timofeeva, K.C. Kim, et al. International Conference on Plutonium-Future, The Science: Topical Conference on Plutonium and Actinides. AIP Conference Transactions. (2000) p.11

Google Scholar

[22] B. Delley, J. Chem. Phys. Vol. 92 (1990), p.508

Google Scholar

[23] B. Delley, J. Chem. Phys. Vol. 113 (2000), p.7756

Google Scholar