Characterization of Chemically Synthesized Ag2Se Nanowires via Anodic Alumina Membrane as Template

Abstract:

Article Preview

Highly ordered nano crystallized Ag2Se nanowires of diameter 200 nm have been successfully prepared through direct chemical method using Anodic Alumina Membrane (AAM) as a template; AgNO3 as cation precursor agent and Na2SeSO3 as Se precursor, respectively at room temperature. The qualitative analysis of the EDAX spectrum of nanowires shows that the atomic composition of Ag and Se in synthesized nanowires is close to 2:1 stoichiometry. XRD spectrum confirms orthorhombic structure. UV-Vis absorption spectrum provides estimation of the optical band gap 1.41 eV of nanowires.

Info:

Periodical:

Edited by:

Dayun Xu

Pages:

21-26

Citation:

R. Singh et al., "Characterization of Chemically Synthesized Ag2Se Nanowires via Anodic Alumina Membrane as Template", Advanced Materials Research, Vol. 628, pp. 21-26, 2013

Online since:

December 2012

Export:

Price:

$41.00

[1] K. Liu, K. Nagodawithana, P. C. Searson, C. L. Chien, Perpendicular giant magnetoresistance of multilayered Co/Cu nanowires, Phys. Rev. B 51 (1995) 7381-84.

DOI: https://doi.org/10.1103/physrevb.51.7381

[2] W. Fritszsche, K. J. Bohm, E. Unger, J. M. Kohler, Metallic nanowires created by biopolymer masking, Appl. Phys. Lett. 75 (1999) 2854-56.

DOI: https://doi.org/10.1063/1.125172

[3] Y. Kondo, K. Takayanang, Synthesis and characterization of helical multi-shell gold nanowires, Science 289 (2000) 606-08.

[4] X. Duan, C. M. Lieber, General synthesis of compound semiconductor nanowires, Adv. Mater. 12 (2000) 298-302.

DOI: https://doi.org/10.1002/(sici)1521-4095(200002)12:4<298::aid-adma298>3.0.co;2-y

[5] T. Iwasaki, T. Motoi, T. Den, Multiwalled carbon nanotubes growth in anodic alumina nanoholes, Appl. Phys. Lett. 75 (1999) 2044-46.

DOI: https://doi.org/10.1063/1.124910

[6] R. Rossetti, S. Nakahara, L. E. Brus, Quantum size effect in redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution, J. Chem. Phys. 79 (1983)1086-88.

DOI: https://doi.org/10.1063/1.445834

[7] A. Henglein, Small-particle research: Physicochemical properties of extremely small colloidal metal and semiconductor particles, Chem. Rev. 89 (1989) 1861-73.

DOI: https://doi.org/10.1021/cr00098a010

[8] L. Brus, Quantum crystallites and non linear optics, Appl. Phys. A 53 (1991) 465-74.

[9] A. P. Alivisatos, Semiconductor clusters nanocrystals and quantum dots, Science 271 (1996) 933-937.

DOI: https://doi.org/10.1126/science.271.5251.933

[10] G. Henshaw, I. P. Parkin, G. J. Shaw, Convenient, low-energy synthesis of metal sulfides and selenides; PbE, Ag2E, ZnE (E =S, Se), Chem. Commun. 10 (1996) 1095-96.

DOI: https://doi.org/10.1039/cc9960001095

[11] R. Rossetti, R. Hull, J. Gibson, L. E. Brus, Excited electronics states and optical spectra of ZnS and CdS Crystallites in the 15 to 50 Ao size range, J. Chem. Phys. 82 (1985) 552-59.

DOI: https://doi.org/10.1063/1.448727

[12] C. B. Murray, C. R. Kagan, M. G. Bawendi, Self-organiztion of CdSe nanocrystallites into three-dimensional quantum dot superlattices, Science 270 (1995) 1335-38.

DOI: https://doi.org/10.1126/science.270.5240.1335

[13] S. K. Chakarvarti, Science and art of synthesis and crafting of nano/microstructures and devices using ion-crafted templates: A review, Proceedings of SPIE, San Diego, California, USA. 6172 (2006) 61720 G1.

DOI: https://doi.org/10.1117/12.640311

[14] D. J. Pena, J. K. Mbindyo, A. J. Carado, T. E. Mallouk, C. D. Keating, B. Razavi, T. S. Mayer, Template Growth of Photoconductive Metal-CdSe-Metal Nanowires, J. Phys. Chem. B 106 (2002) 7458-62.

DOI: https://doi.org/10.1021/jp0256591

[15] S. K. Chakarvarti, J. Vetter, Morphology of etched pores and microstructures fabricated from nuclear track filters, Nucl. Instr. and Meth. B 62 (1991) 109-115.

DOI: https://doi.org/10.1016/0168-583x(91)95936-8

[16] A Blondel, B. Ddoudin, J. –Ph. Ansermet, Comparative study of the magnetoresistane of electrodeposited Co/Cu multilayerd nanowires made by single and dual bath technique, J. Magn. Mater. 165 (1997) 34-37.

DOI: https://doi.org/10.1016/s0304-8853(96)00467-2

[17] M. Kobayashi, Review on structural and dynamical properties of silver chalcogenides, Solid State Ionic 39 (1990) 121-149.

[18] B. Gate, Y. Wu, Y. Yin, P. Yang ,Y. Xia, Single-crystalline nanowires of Ag2Se can be synthesized by templating against nanowires of trigonal Se, J. Am. Chem. Soc. 123 (2001) 11500-501.

DOI: https://doi.org/10.1021/ja0166895

[19] Y. C. Liang, K. Tada, Dependence of silver distributions in electron-beam-exposed beam on dosage as well as on the thickness of dry-sensitized layers and chalcogenide glass films, J. Appl. Phys. 64 (1988) 4494-98.

DOI: https://doi.org/10.1063/1.341275

[20] M. Ferhat, J. Nagao, Thermoelectric and transport properties of β-Ag2Se compounds, J. Appl. Phys. 88 (2000) 813-16.

[21] J. Yvonne, G. N. David, E. S. Paul, A. Amma, T. Mallouk, Preparation and Synthesis of Ag2Se nanowires produced by template directed synthesis, J. Mater. Chem., 12 (2002) 2433-34.

DOI: https://doi.org/10.1039/b202913h

[22] H. M. Pathan, C. D. Lokhande, Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method, Bull. Mater. Sci. 27 (2004) 85-111.

DOI: https://doi.org/10.1007/bf02708491

[23] R. Xu, A. Husman, T. F. Rosenbaum, M. L. Saboungi, J. E. Enderby, P. B. Littlewood, Large magnetoresistance in non-magnetic silver chalcogenides, Nature 390 (1997) 57-60.

DOI: https://doi.org/10.1038/36306

[24] R. Chen, D. Xu, G. Guo, L. Gui, Silver Selenide Nanowires by electrodeposition, J. Electrochem. Soc. 150 (2003) G183-186.

DOI: https://doi.org/10.1149/1.1540065

[25] R. Chen, D. Xu, G. Guo, L. Gui, Preparation of Ag2Se and Ag2Se1-xTex nanowires by electrodeposition from DMSO baths, Electrochem. Commun. 5 (2003) 579-83.

DOI: https://doi.org/10.1016/s1388-2481(03)00133-4

[26] X. D. Ma, X. F. Qian, Z. Yin, Z. K. Zhu, Preparation and characterization of polyvinyl alcohol–selenine nanocomposites at room temperature, J. Mater. Chem. 12 (2002) 663-666.

DOI: https://doi.org/10.1039/b107173b

[27] JCPDS No. 24-1041.