Characterization of Chemically Synthesized Ag2Se Nanowires via Anodic Alumina Membrane as Template

Article Preview

Abstract:

Highly ordered nano crystallized Ag2Se nanowires of diameter 200 nm have been successfully prepared through direct chemical method using Anodic Alumina Membrane (AAM) as a template; AgNO3 as cation precursor agent and Na2SeSO3 as Se precursor, respectively at room temperature. The qualitative analysis of the EDAX spectrum of nanowires shows that the atomic composition of Ag and Se in synthesized nanowires is close to 2:1 stoichiometry. XRD spectrum confirms orthorhombic structure. UV-Vis absorption spectrum provides estimation of the optical band gap 1.41 eV of nanowires.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-26

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Liu, K. Nagodawithana, P. C. Searson, C. L. Chien, Perpendicular giant magnetoresistance of multilayered Co/Cu nanowires, Phys. Rev. B 51 (1995) 7381-84.

DOI: 10.1103/physrevb.51.7381

Google Scholar

[2] W. Fritszsche, K. J. Bohm, E. Unger, J. M. Kohler, Metallic nanowires created by biopolymer masking, Appl. Phys. Lett. 75 (1999) 2854-56.

DOI: 10.1063/1.125172

Google Scholar

[3] Y. Kondo, K. Takayanang, Synthesis and characterization of helical multi-shell gold nanowires, Science 289 (2000) 606-08.

DOI: 10.1126/science.289.5479.606

Google Scholar

[4] X. Duan, C. M. Lieber, General synthesis of compound semiconductor nanowires, Adv. Mater. 12 (2000) 298-302.

DOI: 10.1002/(sici)1521-4095(200002)12:4<298::aid-adma298>3.0.co;2-y

Google Scholar

[5] T. Iwasaki, T. Motoi, T. Den, Multiwalled carbon nanotubes growth in anodic alumina nanoholes, Appl. Phys. Lett. 75 (1999) 2044-46.

DOI: 10.1063/1.124910

Google Scholar

[6] R. Rossetti, S. Nakahara, L. E. Brus, Quantum size effect in redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution, J. Chem. Phys. 79 (1983)1086-88.

DOI: 10.1063/1.445834

Google Scholar

[7] A. Henglein, Small-particle research: Physicochemical properties of extremely small colloidal metal and semiconductor particles, Chem. Rev. 89 (1989) 1861-73.

DOI: 10.1021/cr00098a010

Google Scholar

[8] L. Brus, Quantum crystallites and non linear optics, Appl. Phys. A 53 (1991) 465-74.

Google Scholar

[9] A. P. Alivisatos, Semiconductor clusters nanocrystals and quantum dots, Science 271 (1996) 933-937.

DOI: 10.1126/science.271.5251.933

Google Scholar

[10] G. Henshaw, I. P. Parkin, G. J. Shaw, Convenient, low-energy synthesis of metal sulfides and selenides; PbE, Ag2E, ZnE (E =S, Se), Chem. Commun. 10 (1996) 1095-96.

DOI: 10.1039/cc9960001095

Google Scholar

[11] R. Rossetti, R. Hull, J. Gibson, L. E. Brus, Excited electronics states and optical spectra of ZnS and CdS Crystallites in the 15 to 50 Ao size range, J. Chem. Phys. 82 (1985) 552-59.

DOI: 10.1063/1.448727

Google Scholar

[12] C. B. Murray, C. R. Kagan, M. G. Bawendi, Self-organiztion of CdSe nanocrystallites into three-dimensional quantum dot superlattices, Science 270 (1995) 1335-38.

DOI: 10.1126/science.270.5240.1335

Google Scholar

[13] S. K. Chakarvarti, Science and art of synthesis and crafting of nano/microstructures and devices using ion-crafted templates: A review, Proceedings of SPIE, San Diego, California, USA. 6172 (2006) 61720 G1.

DOI: 10.1117/12.640311

Google Scholar

[14] D. J. Pena, J. K. Mbindyo, A. J. Carado, T. E. Mallouk, C. D. Keating, B. Razavi, T. S. Mayer, Template Growth of Photoconductive Metal-CdSe-Metal Nanowires, J. Phys. Chem. B 106 (2002) 7458-62.

DOI: 10.1021/jp0256591

Google Scholar

[15] S. K. Chakarvarti, J. Vetter, Morphology of etched pores and microstructures fabricated from nuclear track filters, Nucl. Instr. and Meth. B 62 (1991) 109-115.

DOI: 10.1016/0168-583x(91)95936-8

Google Scholar

[16] A Blondel, B. Ddoudin, J. –Ph. Ansermet, Comparative study of the magnetoresistane of electrodeposited Co/Cu multilayerd nanowires made by single and dual bath technique, J. Magn. Mater. 165 (1997) 34-37.

DOI: 10.1016/s0304-8853(96)00467-2

Google Scholar

[17] M. Kobayashi, Review on structural and dynamical properties of silver chalcogenides, Solid State Ionic 39 (1990) 121-149.

DOI: 10.1016/0167-2738(90)90392-5

Google Scholar

[18] B. Gate, Y. Wu, Y. Yin, P. Yang ,Y. Xia, Single-crystalline nanowires of Ag2Se can be synthesized by templating against nanowires of trigonal Se, J. Am. Chem. Soc. 123 (2001) 11500-501.

DOI: 10.1021/ja0166895

Google Scholar

[19] Y. C. Liang, K. Tada, Dependence of silver distributions in electron-beam-exposed beam on dosage as well as on the thickness of dry-sensitized layers and chalcogenide glass films, J. Appl. Phys. 64 (1988) 4494-98.

DOI: 10.1063/1.341275

Google Scholar

[20] M. Ferhat, J. Nagao, Thermoelectric and transport properties of β-Ag2Se compounds, J. Appl. Phys. 88 (2000) 813-16.

Google Scholar

[21] J. Yvonne, G. N. David, E. S. Paul, A. Amma, T. Mallouk, Preparation and Synthesis of Ag2Se nanowires produced by template directed synthesis, J. Mater. Chem., 12 (2002) 2433-34.

DOI: 10.1039/b202913h

Google Scholar

[22] H. M. Pathan, C. D. Lokhande, Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method, Bull. Mater. Sci. 27 (2004) 85-111.

DOI: 10.1007/bf02708491

Google Scholar

[23] R. Xu, A. Husman, T. F. Rosenbaum, M. L. Saboungi, J. E. Enderby, P. B. Littlewood, Large magnetoresistance in non-magnetic silver chalcogenides, Nature 390 (1997) 57-60.

DOI: 10.1038/36306

Google Scholar

[24] R. Chen, D. Xu, G. Guo, L. Gui, Silver Selenide Nanowires by electrodeposition, J. Electrochem. Soc. 150 (2003) G183-186.

DOI: 10.1149/1.1540065

Google Scholar

[25] R. Chen, D. Xu, G. Guo, L. Gui, Preparation of Ag2Se and Ag2Se1-xTex nanowires by electrodeposition from DMSO baths, Electrochem. Commun. 5 (2003) 579-83.

DOI: 10.1016/s1388-2481(03)00133-4

Google Scholar

[26] X. D. Ma, X. F. Qian, Z. Yin, Z. K. Zhu, Preparation and characterization of polyvinyl alcohol–selenine nanocomposites at room temperature, J. Mater. Chem. 12 (2002) 663-666.

DOI: 10.1039/b107173b

Google Scholar

[27] JCPDS No. 24-1041.

Google Scholar