[1]
Padhi AK, Nanjundaswamy KS, Goodenough JB. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 1997; 144: 1188-94.
DOI: 10.1149/1.1837571
Google Scholar
[2]
Prosini PP. Modeling the voltage profile for LiFePO4. J Electrochem Soc 2005; 152: A1925-9.
Google Scholar
[3]
Islam MS, Driscoll DJ, Fisher CAJ, Slater PR. Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem Mater 2005; 17: 5085-92.
DOI: 10.1021/cm050999v
Google Scholar
[4]
Laffont L, Delacourt C, Gibot P, Wu MY, Kooyman P, Masquelier C, et al. Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy. Chem Mater 2006; 18: 5520-9.
DOI: 10.1021/cm0617182
Google Scholar
[5]
Sigle W, Amin R, Weichert K, van Aken PA, Maier J. Delithiation study of LiFePO4 crystals using electron energy-loss spectroscopy. Electrochem. Solid-State Lett. 2009; 12: A151-4.
DOI: 10.1149/1.3131726
Google Scholar
[6]
Maxisch T, Zhou F, Ceder G. Ab initio study of the migration of small polarons in olivine LixFePO4 and their association with lithium ions and vacancies. Phys Rev B 2006; 73: 104301.
DOI: 10.1103/physrevb.73.104301
Google Scholar
[7]
Chung SY, Bloking JT, Chiang YM. Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 2002; 1: 123-8.
DOI: 10.1038/nmat732
Google Scholar
[8]
Ouyang CY, Wang DY, Shi SQ, Wang ZX, Li H, Huang XJ, et al. First principles study on NaxLi1-xFePO4 as cathode material for rechargeable lithium batteries. Chinese Phys Lett 2006; 23: 61-4.
Google Scholar
[9]
Ouyang XF, Shi SQ, Ouyang CY, Jiang DY, Liu DS, Ye ZQ, et al. First principles studies on the electronic structures of LiMxFe1-xPO4 ( M = Co, Ni, and Rh). Chinese Phys 2007; 16: 3042-7.
Google Scholar
[10]
Wang DY, Li H, Shi SQ, Huang X, Chen L. Improving the rate performance of LiFePO4 by Fe-site doping. Electrochim Acta 2005; 50: 2955-8.
DOI: 10.1016/j.electacta.2004.11.045
Google Scholar
[11]
Ouyang CY, Shi SQ, Wang ZX, Huang X, Chen L. First-principles study of Li ion diffusion in LiFePO4. Phys Rev B 2004; 69: 104303.
Google Scholar
[12]
Morgan D, Van der Ven A, Ceder G. Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochem. Solid St. 2004; 7: A30-2.
DOI: 10.1149/1.1633511
Google Scholar
[13]
Dathar GKP, Sheppard D, Stevenson KJ, Henkelman G. Calculations of Li-ion diffusion in olivine phosphates. Chem Mater 2011; 23: 4032-7.
DOI: 10.1021/cm201604g
Google Scholar
[14]
Zaghib K, Mauger A, Goodenough JB, Gendron F, Julien CM. Electronic, optical, and magnetic properties of LiFePO4: small magnetic polaron effects. Chem Mater 2007; 19: 3740-7.
DOI: 10.1021/cm0710296
Google Scholar
[15]
Liu ZJ, Huang XJ, Wang DS. First-principle investigations of N doping in LiFePO4. Solid State Commun 2008; 147: 505-9.
DOI: 10.1016/j.ssc.2008.06.013
Google Scholar
[16]
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 1996; 54: 11169-86.
DOI: 10.1103/physrevb.54.11169
Google Scholar
[17]
Xu GG, Wu QY, Chen ZG, Huang ZG, Wu RQ, Feng YP. Disorder and surface effects on work function of Ni-Pt metal gates. Phys Rev B 2008; 78: 115420.
DOI: 10.1103/physrevb.78.115420
Google Scholar
[18]
Weng ZZ, Zhang JM, Huang ZG, Lin WX. Effect of oxygen vacancy defect on the magnetic properties of Co-doped ZnO. Chinese Phys B 2011; 20: 027103.
DOI: 10.1088/1674-1056/20/2/027103
Google Scholar
[19]
Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 1992; 46: 6671-87.
DOI: 10.1103/physrevb.46.6671
Google Scholar
[20]
Zhou F, Cococcioni M, Marianetti CA, Morgan D, Ceder G. First-principles prediction of redox potentials in transition-metal compounds with LDA+U. Phys Rev B 2004; 70: 235121.
DOI: 10.1103/physrevb.70.235121
Google Scholar
[21]
Zhou F, Kang K, Maxisch T, Ceder G, Morgan D. The electronic structure and band gap of LiFePO4 and LiMnPO4. Solid State Commun 2004; 132: 181-6.
DOI: 10.1016/j.ssc.2004.07.055
Google Scholar
[22]
Mills G, Jónsson H, Schenter GK. Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf Sci 1995; 324: 305-37.
DOI: 10.1016/0039-6028(94)00731-4
Google Scholar
[23]
Liu ZJ, Huang XJ. Factors that affect activation energy for Li diffusion in LiFePO4: A first-principles investigation. Solid State Ionics 2010; 181: 907-13.
DOI: 10.1016/j.ssi.2010.05.020
Google Scholar
[24]
Shi SQ, Liu LH, Ouyang CY, Wang DS, Wang Z, Chen L, et al. Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations. Phys Rev B 2003; 68: 195108.
Google Scholar
[25]
Guo ZP, Liu H, Bewlay S, Liu HK, Dou SX. Start-fine-particle carbon-enriched Li0. 98Mg0. 02FePO4 synthesized by a novel modified solid-state reaction. Synth Met 2005; 153: 113-6.
DOI: 10.1016/j.synthmet.2005.07.220
Google Scholar
[26]
Ong SP, Chevrier VL, Ceder G. Comparison of small polaron migration and phase separation in olivine LiMnPO4 and LiFePO4 using hybrid density functional theory. Phys Rev B 2011; 83: 075112.
Google Scholar