The Role of Na and Mg Doping on the Electronic Conductivity of LiFePO4 : First-Principles Investigations

Article Preview

Abstract:

The effects of Na and Mg doped Li site for Li1-xMxFePO4 have been studied using first-principles within GGA+U. Elastic band method has been used to calculate the activation energy for Li diffusion. The calculated results mean that, the band gaps of the Na and Mg doped Li1-xMxFePO4 are both narrow than that of the un-doped. Especially Mg dopant gives rise to much narrow gap, which is attributed to the appearance of impurity level in the forbidden band of un-doped LiFePO4. The calculated activation energies for LiFePO4, Li0.875Na0.125Subscript textFePO4, and Li0.875Mg0.125FePO4 are 0.33eV, 0.31 eV, and 0.15 eV, respectively. From the calculated results of band gap and activation energy, we can find that Mg dopant will benefit for the hopping of electrons and the improvement of the electronic conductivity for LiFePO4.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

64-69

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Padhi AK, Nanjundaswamy KS, Goodenough JB. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 1997; 144: 1188-94.

DOI: 10.1149/1.1837571

Google Scholar

[2] Prosini PP. Modeling the voltage profile for LiFePO4. J Electrochem Soc 2005; 152: A1925-9.

Google Scholar

[3] Islam MS, Driscoll DJ, Fisher CAJ, Slater PR. Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem Mater 2005; 17: 5085-92.

DOI: 10.1021/cm050999v

Google Scholar

[4] Laffont L, Delacourt C, Gibot P, Wu MY, Kooyman P, Masquelier C, et al. Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy. Chem Mater 2006; 18: 5520-9.

DOI: 10.1021/cm0617182

Google Scholar

[5] Sigle W, Amin R, Weichert K, van Aken PA, Maier J. Delithiation study of LiFePO4 crystals using electron energy-loss spectroscopy. Electrochem. Solid-State Lett. 2009; 12: A151-4.

DOI: 10.1149/1.3131726

Google Scholar

[6] Maxisch T, Zhou F, Ceder G. Ab initio study of the migration of small polarons in olivine LixFePO4 and their association with lithium ions and vacancies. Phys Rev B 2006; 73: 104301.

DOI: 10.1103/physrevb.73.104301

Google Scholar

[7] Chung SY, Bloking JT, Chiang YM. Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 2002; 1: 123-8.

DOI: 10.1038/nmat732

Google Scholar

[8] Ouyang CY, Wang DY, Shi SQ, Wang ZX, Li H, Huang XJ, et al. First principles study on NaxLi1-xFePO4 as cathode material for rechargeable lithium batteries. Chinese Phys Lett 2006; 23: 61-4.

Google Scholar

[9] Ouyang XF, Shi SQ, Ouyang CY, Jiang DY, Liu DS, Ye ZQ, et al. First principles studies on the electronic structures of LiMxFe1-xPO4 ( M = Co, Ni, and Rh). Chinese Phys 2007; 16: 3042-7.

Google Scholar

[10] Wang DY, Li H, Shi SQ, Huang X, Chen L. Improving the rate performance of LiFePO4 by Fe-site doping. Electrochim Acta 2005; 50: 2955-8.

DOI: 10.1016/j.electacta.2004.11.045

Google Scholar

[11] Ouyang CY, Shi SQ, Wang ZX, Huang X, Chen L. First-principles study of Li ion diffusion in LiFePO4. Phys Rev B 2004; 69: 104303.

Google Scholar

[12] Morgan D, Van der Ven A, Ceder G. Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochem. Solid St. 2004; 7: A30-2.

DOI: 10.1149/1.1633511

Google Scholar

[13] Dathar GKP, Sheppard D, Stevenson KJ, Henkelman G. Calculations of Li-ion diffusion in olivine phosphates. Chem Mater 2011; 23: 4032-7.

DOI: 10.1021/cm201604g

Google Scholar

[14] Zaghib K, Mauger A, Goodenough JB, Gendron F, Julien CM. Electronic, optical, and magnetic properties of LiFePO4: small magnetic polaron effects. Chem Mater 2007; 19: 3740-7.

DOI: 10.1021/cm0710296

Google Scholar

[15] Liu ZJ, Huang XJ, Wang DS. First-principle investigations of N doping in LiFePO4. Solid State Commun 2008; 147: 505-9.

DOI: 10.1016/j.ssc.2008.06.013

Google Scholar

[16] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 1996; 54: 11169-86.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[17] Xu GG, Wu QY, Chen ZG, Huang ZG, Wu RQ, Feng YP. Disorder and surface effects on work function of Ni-Pt metal gates. Phys Rev B 2008; 78: 115420.

DOI: 10.1103/physrevb.78.115420

Google Scholar

[18] Weng ZZ, Zhang JM, Huang ZG, Lin WX. Effect of oxygen vacancy defect on the magnetic properties of Co-doped ZnO. Chinese Phys B 2011; 20: 027103.

DOI: 10.1088/1674-1056/20/2/027103

Google Scholar

[19] Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 1992; 46: 6671-87.

DOI: 10.1103/physrevb.46.6671

Google Scholar

[20] Zhou F, Cococcioni M, Marianetti CA, Morgan D, Ceder G. First-principles prediction of redox potentials in transition-metal compounds with LDA+U. Phys Rev B 2004; 70: 235121.

DOI: 10.1103/physrevb.70.235121

Google Scholar

[21] Zhou F, Kang K, Maxisch T, Ceder G, Morgan D. The electronic structure and band gap of LiFePO4 and LiMnPO4. Solid State Commun 2004; 132: 181-6.

DOI: 10.1016/j.ssc.2004.07.055

Google Scholar

[22] Mills G, Jónsson H, Schenter GK. Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf Sci 1995; 324: 305-37.

DOI: 10.1016/0039-6028(94)00731-4

Google Scholar

[23] Liu ZJ, Huang XJ. Factors that affect activation energy for Li diffusion in LiFePO4: A first-principles investigation. Solid State Ionics 2010; 181: 907-13.

DOI: 10.1016/j.ssi.2010.05.020

Google Scholar

[24] Shi SQ, Liu LH, Ouyang CY, Wang DS, Wang Z, Chen L, et al. Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations. Phys Rev B 2003; 68: 195108.

Google Scholar

[25] Guo ZP, Liu H, Bewlay S, Liu HK, Dou SX. Start-fine-particle carbon-enriched Li0. 98Mg0. 02FePO4 synthesized by a novel modified solid-state reaction. Synth Met 2005; 153: 113-6.

DOI: 10.1016/j.synthmet.2005.07.220

Google Scholar

[26] Ong SP, Chevrier VL, Ceder G. Comparison of small polaron migration and phase separation in olivine LiMnPO4 and LiFePO4 using hybrid density functional theory. Phys Rev B 2011; 83: 075112.

Google Scholar