Intrinsic Ferromagnetism of the GaMnN Thin Films

Article Preview

Abstract:

The Mn-doped GaN (GaMnN) films on c-plane sapphire substrates were prepared by using Laser Molecular Beam Epitaxy (LMBE) at different base nitrogen pressure, followed by annealing in the ammonia atmosphere at 950 °C for 30 min, to study the original reason of the room-temperature ferromagnetism of GaMnN films. We found the crystalline quality was sensitive to the base nitrogen pressure during growth. X-ray photoelectron spectra (XPS) analysis confirmed that the Mn3+ and Mn2+ coexist in our samples. The room-temperature ferromagnetic behavior can be explained by double exchange. The ferromagnetism would be weakened by the nitrogen vacancies, which plays a role of donor.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-54

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D. Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors. Science 2000; 287: 1019-4.

DOI: 10.1126/science.287.5455.1019

Google Scholar

[2] Cui X G , Tao Z K, Zhang R, Li X, Xiu X Q, Xie Z L, et al. Structural and magnetic properties in Mn-doped GaN grown by metal organic chemical vapor deposition. Appl Phys Lett 2008; 92: 152116-3.

DOI: 10.1063/1.2909545

Google Scholar

[3] Hu B, Man B Y, Yang C, Liu M, Chen C S, Gao X G, et al. The important role of Mn3+ in the room-temperature ferromagnetism of Mn-doped GaN films Appl Surf Sci 2011; 258, 525-5.

DOI: 10.1016/j.apsusc.2011.08.075

Google Scholar

[4] Yang S Y, Man B Y, Liu M, Chen C S, Gao X G, et al. Effect of substrate temperature on the morphology, structural and optical properties of Zn1−xCoxO thin films. Appl Surf Sci 2011; 257: 3856-5.

DOI: 10.1016/j.apsusc.2010.11.057

Google Scholar

[5] Leite D M G, Li T, Devillers T, Schiaber Z S, Lisboa-Filho P N, et al. Columnar microstructure of nanocrystalline Ga1-xMnxN films deposited by reactive sputtering. J Cryst Growth 2011; 327: 209-6.

DOI: 10.1016/j.jcrysgro.2011.05.012

Google Scholar

[6] Biswas K, Sardar K, Rao C N R. Ferromagnetism in Mn-doped GaN nanocrystals prepared solvothermally at low temperatures. Appl Phys Lett 2006; 89: 132503-3.

DOI: 10.1063/1.2357927

Google Scholar

[7] Aoki M, Yamane H, Shimada M, Sarayama S, Iwata H, et al. Influence of 3d-Transition-Metal Additives on Single Crystal Growth of GaN by the Na Flux Method. Jpn J Appl Phys 2003; 42: 5445-5.

DOI: 10.1143/jjap.42.5445

Google Scholar

[8] Reed M L, Ritums M K, Stadelmaier H H, Reed M J, Parker C A, Bedair S M, et al. Room-temperature magnetic (Ga, Mn)N: a new material for spin electronic devices. Mater Lett 2001; 51: 500-4.

DOI: 10.1016/s0167-577x(01)00342-1

Google Scholar

[9] Chen D, Ding Z, Yao S, Hua W, Wang K, Chen T. Nano-clusters structure and magnetic properties of high fluence Mn+ ion-implanted GaN. Nucl Instrum Methods Phys Res B 2008; 266: 2797-4.

DOI: 10.1016/j.nimb.2008.03.120

Google Scholar

[10] Sonoda S, Shimizu S, Sasaki T, Yamamoto Y, Hori H. Molecular beam epitaxy of wurtzite (Ga, Mn)N films on sapphire(0001) showing the ferromagnetic behaviour at room-temperature. J Cryst Growth 2002; 237-239: 1358-5.

DOI: 10.1016/s0022-0248(01)02183-2

Google Scholar

[11] Baik J M, Jang H W, Kim J K, Lee J L. Effect of microstructural change on magnetic property of Mn-implanted p-type GaN. Appl Phys Lett 2003; 82: 583-3.

DOI: 10.1063/1.1541111

Google Scholar

[12] Tanaka M. Epitaxial growth and properties of III-V magnetic semiconductor (GaMn)As and its heterostructures. J Vac Sci Technol B 1998; 16: 2267-8.

DOI: 10.1116/1.590160

Google Scholar

[13] Xu D Q, Zhang Y M, Zhang Y M, et al. Possible origin of room-temperature ferromagnetism in undoped GaN epilayers implanted with Mn ions. J Magn Magn Mater 2009; 321: 2442-4.

DOI: 10.1016/j.jmmm.2009.03.009

Google Scholar

[14] O'Mahony D, McGee F, Venkatesan M, Lunne J G, et al. Room-temperature ferromagnetism in (Ga, Mn)N thin films grown by pulsed laser deposition. Superlattices Microstruct 2004; 36: 403-6.

DOI: 10.1016/j.spmi.2004.09.004

Google Scholar

[15] Lin Y J, Wang Z L, Chang H C. Surface band bending, nitrogen-vacancy-related defects, and 2. 8-eV photoluminescence band of (NH4)2Sx-treated p-GaN. Appl Phys Lett 2002; 81: 5183-3.

DOI: 10.1063/1.1533857

Google Scholar

[16] Shon Y, Lee S, Jeon H C, Park C S, Kang T W, Kim J S, et al. The study of structural, optical, and magnetic properties of undoped and p-type GaN implanted with Mn+ (10 at. %). Materials Science and Engineering B 2008; 146: 196-4.

DOI: 10.1016/j.mseb.2007.07.011

Google Scholar

[17] Fisher S, Wetzel C, Haller E E, Meyer B K. On p-type doping in GaN-acceptor binding energies. Appl Phys Lett 1995; 67: 1298-3.

DOI: 10.1063/1.114403

Google Scholar

[18] Kowalczyk S P, Ley L, McFeely F R, Shirley D A. Multiplet splitting of the manganese 2p and 3p levels in MnF2 single crystals. Phys Rev B 1975; 11: 1721-7.

Google Scholar

[19] Choi C H, Kim S H, Jung M H. Characterizations of n-type ferromagnetic GaMnN thin film grown on GaN/Al2O3 (0001) by metal-organic chemical vapor deposition. J Magn Magn Mater 2009; 21: 3833-6.

DOI: 10.1016/j.jmmm.2009.05.017

Google Scholar

[20] Sonoda S, Tanaka I, Ikeno H, Yamamoto T, Oba F, Araki T, et al. Coexistence of Mn2+ and Mn3+ in ferromagnetic GaMnN. J Phys-Condens Mat 2006; 18: 4615-8.

DOI: 10.1088/0953-8984/18/19/015

Google Scholar

[21] Yang X L, Chen Z T, Zhao L B, Zhu W X, Wang C D, Pei X D, et al. Structural, optical and magnetic properties of Ga1-xMnxN films grown by MOCVD. J Phys D Appl Phys 2008; 41: 245004-4.

DOI: 10.1088/0022-3727/41/24/245004

Google Scholar

[22] Akai H. Ferromagnetism and Its Stability in the Diluted Magnetic Semiconductor (In, Mn)As. Phys Rev Lett 1998; 81: 3002-4.

DOI: 10.1103/physrevlett.81.3002

Google Scholar

[23] Dalpian G M, Wei S H, Gong X G, Silva J R, Fazzio A. Phenomenological band structure model of magnetic coupling in semiconductors. Solid State Commun 2006; 138: 353-6.

DOI: 10.1016/j.ssc.2006.03.002

Google Scholar