[1]
Kennedy J, Eberhart R C. Particle swarm optimization[C]. Proc of the IEEE International Conference on Neural Networks, Piscataway, NJ: IEEE Service center, 1995: 1942-(1948).
Google Scholar
[2]
Shi Y H, Eberhart R C. A modified particle swarm optimizer[C]. Proc of the IEEE International Conference on Evolutionary Computation, Piscataway, NJ: IEEE Service Center, 1998: 69-73.
DOI: 10.1109/icec.1998.699146
Google Scholar
[3]
Zhan Z H, Zhang J. Adaptive particle swarm optimization[C]. The Sixth International conference on Ant Colony Optimization and Swarm Intelligence, ANTS 2008, LNCS 5217, 2008: 227-234.
DOI: 10.1007/978-3-540-87527-7_21
Google Scholar
[4]
Hu J X, Zeng J C. A particle swarm optimization model with stochastic inertia weight [J]. Computer Simulation, 2006, 23 (8): 164-166.
Google Scholar
[5]
Huang X, Zhang J, Zhan Z H. The fast particle swarm optimization algorithm based on random inertia weight [J]. Computer Engineering and Design, 2009, 30(3): 647-650.
Google Scholar
[6]
Kennedy J. Mind and culture: Particle swarm implications socially intelligent agents [c]. Papers from the 1997 AAAI Fall Symposium, Menlo Park, 1997: 67-72.
Google Scholar
[7]
Suganthan P N. Particle swarm optimizer with neighborhood operator [c]. Proc of the congress on Evolutionary Computation, Washington DC, 1999: 1958-(1962).
Google Scholar
[8]
Ratnawecra A, Halgamuge S. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients [J]. Evolutionary computation, 2004, 8(3): 240-255.
DOI: 10.1109/tevc.2004.826071
Google Scholar
[9]
Feng X, Chen G L, Guo W Z. Settings and Experimental Analysis of acceleration coefficients in particle swarm optimization algorithm [J]. Journal of Jimei University, 2006, 11(2): 146-151.
Google Scholar
[10]
Huang S R. Particle swarm optimization algorithm based on the random acceleration coefficient [J]. Microelectronics & Computer, 2010, 27(6): 114-117.
Google Scholar