[1]
Ziegler J G, Nichols N B. Optimum settings for automatic con- trollers [J]. Transaction of ASME, 1992: 759-768.
Google Scholar
[2]
Kiam Heong Ang, Gregory Chong, Yun Li. PID Control system A- nalysis, Design, and Technology. [J] IEEE Transactions on control systems technology, 2005, 13(4).
DOI: 10.1109/tcst.2005.847331
Google Scholar
[3]
Chen M J, C A Desoer. Necessary and sufficient condition for robust stability of linear distributed feedback system [J]. Int J Control, 1982, 35(2): 255-267.
DOI: 10.1080/00207178208922617
Google Scholar
[4]
Frank L L. Applied Optimal Control and Estimation [M]. Englewo- od Cliffs, N.J. Prentice H all, (1992).
Google Scholar
[5]
Daniel E M, Mauro R. Simultaneous Stabilization With Near Opt- imal LQR Performance [J]. IEEE Trans Autom at Contr, 2001, 46(10): 1543-1555.
DOI: 10.1109/9.956050
Google Scholar
[6]
VANDER LINDEN G W, LAM BRECHTS P F. Control of an Experimental Inverted Pendulum with Dry Friction [J]. IEEE Control System Magazine 1993, 13(4): 44-50.
Google Scholar
[7]
Astrom K J , Hagglund T. The Future of PID Control [ J ] . Control Engineering Practice , 2001 , (9) : 116321175.
Google Scholar
[8]
K.J. Astrom and K. Furuta. Swinging up a pendulum by energy control [J]. Automatica, 2000. 2, 36(2).
Google Scholar
[9]
Patel R V, M Toda, B Sridhar. Robustness of linear quadratic state feedback designs in the presence of system uncertainty [ J] . IEEE Trans Auto Control, 1977, 22: 945-949.
DOI: 10.1109/tac.1977.1101658
Google Scholar
[10]
Yang Gang, Sun Jianguo, Li Qinghong Augmented LQR Method for Aeroengine Control Systems [J]. Journal of Aerospace Power, 2004, 19(1): 153-158.
Google Scholar
[11]
FallSide F, H Seraji. Design of optimal systems by a frequency domain technique [J]. Proc Inst Elec Eng, 1970. 117: 2017-(2024).
DOI: 10.1049/piee.1970.0363
Google Scholar
[12]
Rabbit Semiconductor Corporation, Wide-cat (BL2000) C-Pro- grammable single board computer with Ethemet user's manual [Z], (2003).
Google Scholar