Robust Controller Design for Inverted Pendulum System

Article Preview

Abstract:

For the high order, unstable, multivariable, nonlinear and strong coupling characteristics, robust stability is an important indicator of inverted pendulum system. In this paper an LQR robust controller of inverter pendulum system is designed. The simulation and the experimental results showed that the stability of the robust LQR controller is better than the original LQR controller. When the system departure counterpoise for all kinds of reasons, it get back equilibrium state without depleting any energy, and approach state of equilibrium of all state component.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 631-632)

Pages:

1342-1347

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ziegler J G, Nichols N B. Optimum settings for automatic con- trollers [J]. Transaction of ASME, 1992: 759-768.

Google Scholar

[2] Kiam Heong Ang, Gregory Chong, Yun Li. PID Control system A- nalysis, Design, and Technology. [J] IEEE Transactions on control systems technology, 2005, 13(4).

DOI: 10.1109/tcst.2005.847331

Google Scholar

[3] Chen M J, C A Desoer. Necessary and sufficient condition for robust stability of linear distributed feedback system [J]. Int J Control, 1982, 35(2): 255-267.

DOI: 10.1080/00207178208922617

Google Scholar

[4] Frank L L. Applied Optimal Control and Estimation [M]. Englewo- od Cliffs, N.J. Prentice H all, (1992).

Google Scholar

[5] Daniel E M, Mauro R. Simultaneous Stabilization With Near Opt- imal LQR Performance [J]. IEEE Trans Autom at Contr, 2001, 46(10): 1543-1555.

DOI: 10.1109/9.956050

Google Scholar

[6] VANDER LINDEN G W, LAM BRECHTS P F. Control of an Experimental Inverted Pendulum with Dry Friction [J]. IEEE Control System Magazine 1993, 13(4): 44-50.

Google Scholar

[7] Astrom K J , Hagglund T. The Future of PID Control [ J ] . Control Engineering Practice , 2001 , (9) : 116321175.

Google Scholar

[8] K.J. Astrom and K. Furuta. Swinging up a pendulum by energy control [J]. Automatica, 2000. 2, 36(2).

Google Scholar

[9] Patel R V, M Toda, B Sridhar. Robustness of linear quadratic state feedback designs in the presence of system uncertainty [ J] . IEEE Trans Auto Control, 1977, 22: 945-949.

DOI: 10.1109/tac.1977.1101658

Google Scholar

[10] Yang Gang, Sun Jianguo, Li Qinghong Augmented LQR Method for Aeroengine Control Systems [J]. Journal of Aerospace Power, 2004, 19(1): 153-158.

Google Scholar

[11] FallSide F, H Seraji. Design of optimal systems by a frequency domain technique [J]. Proc Inst Elec Eng, 1970. 117: 2017-(2024).

DOI: 10.1049/piee.1970.0363

Google Scholar

[12] Rabbit Semiconductor Corporation, Wide-cat (BL2000) C-Pro- grammable single board computer with Ethemet user's manual [Z], (2003).

Google Scholar