p.404
p.412
p.417
p.424
p.429
p.434
p.437
p.442
p.447
Synthesis of Nickel-Based Ferrite Nanofibers and their Static Magnetic and Microwave Absorption Properties
Abstract:
Ni0.5Zn0.5Fe2O4, Ni0.3Cu0.2Zn0.5Fe2O4 and Ni0.4Co0.2Zn0.4Fe2O4 spinel ferrite nanofibers with 60–100 nm in diameter were fabricated through the sol-gel assisted electrospinning method, followed by calcination at 600°C for 2h in air. The phase structure morphology and element composition of these nanofibers were determined by XRD, FE-SEM and EDS. Magnetic measurements were used to justify the ferromagnetic properties of these nanofibers. Microwave absorption, which was in the range of 2-18 GHz, was studied by a vector network analyzer. The adoption of Cu2+ and Co2+ substitution was found to improve the microwave absorption in relation to non-substituted NiZn ferrite nanofibers. Reflection loss exceeding –5 dB is obtained between 11 and 18 GHz for silicon rubber composites containing 15 vol% nickel-based ferrite nanofibers with coating thicknesses of 3 mm. The results indicate that the prepared nickel-based ferrite nanofibers possess good electromagnetic wave absorption performance in the Ku band and have great potential as microwave absorber for practical applications.
Info:
Periodical:
Pages:
429-433
Citation:
Online since:
January 2013
Authors:
Price:
Сopyright:
© 2013 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: