Influence of Calcium Ion on Thermal Degradation and Flame Retardance Behaviour of Alginate Fiber

Article Preview

Abstract:

Experimental research on calcium alginate fibers thermal degradation and flame retardancy under catalysis of metallic salts was done by limiting oxygen index (LOI), scanning electron microscopy (SEM), and thermogravimetric analysis (TG) methods. LOI results show that with increasing calcium ions content, the flame retardant properties of the calcium alginate fibers improves further. The residues of calcium alginate fibers gradually retained fiber shape and on the surface of the residues the holes reduced, with the calcium ion content increasing. TG indicates temperature at maximum rate of weight loss (T-max) was clearly shifted from 246 °C for alginic acid fibers to 244°C, 236°C, 208°C, 205 °C and 203°C (SCa-1-1# calcium alginate fibers, SCa-2-2# calcium alginate fibers, SCa-3-3# calcium alginate fibers, SCa-4-4# calcium alginate fibers, SCa-5-5# calcium alginate fibers), respectively. The thermal degradation residues at 1000°C for different calcium alginate fibers are 13.7%, 16.1%, 17.2%, 18.2%, 18.4%, 19.2%, separately. Further discussion of the combustion process and flame retardant mechanism is presented.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 631-632)

Pages:

447-451

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Fan, Y. Du, B. Zhang, Preparation and properties of alginate/carboxymethyl chitosan blend fibres, Carbohyd. Polym. 65 (2006) 447-452.

DOI: 10.1016/j.carbpol.2006.01.031

Google Scholar

[2] C.J. Zhang, P. Zhu, H.F. Wang, Research on the properties of alginate fiber with high strength, Textile Auxiliaries. 26 (2009) 15-18.

Google Scholar

[3] Q.S. Kong, B.B. Wang, Q. Ji, Thermal degradation and flame retardancy of calcium alginate fibres, Chin. J. Polym. Sci. 27 (2009) 807-812.

Google Scholar

[4] J.J. Zhang, Q. Ji, Effects of divalent metal ions on the flame retardancy and pyrolysis products of alginate fibres, Polym. Degrad. Stab. 97 (2012) 1034-1040.

DOI: 10.1016/j.polymdegradstab.2012.03.004

Google Scholar

[5] I.Y. Eom, K.H. Kim, J.Y. Kim, Characterization of primary thermal degradation features of lignocellulosic biomass after removal of inorganic metals by diverse solvents, Bioresour. Technol. 102 (2011) 3437-3444.

DOI: 10.1016/j.biortech.2010.10.056

Google Scholar

[6] J.J. Zhang, Q. Ji, P. Zhang, Y. Z. Xia, Thermal stability and flame-retardancy mechanism of poly (ethylene terephthalate) / boehmite nanocomposites. Polym. Degrad. Stab. 95 (2010) 1211-1218.

DOI: 10.1016/j.polymdegradstab.2010.04.001

Google Scholar

[7] L.P. Jiang, Q.S. Kong, B.B. Wang, Study on preparation of calcium alginate fiber and flame retardant properties, Flame retardant materials and technology. 4 (2008) 14.

Google Scholar

[8] M. Müller-Hagedorn, H. Bockhorn, L. Krebs, A comparative kinetic study on the pyrolysis of three different wood species, J. Anal. Appl. Pyrol. 68–69 (2003) 231-249.

DOI: 10.1016/s0165-2370(03)00065-2

Google Scholar

[9] X.H. Shen, Q. Ji, J.J. Zhang, Study on the pyrolysis of calcium alginate fiber, 2010 the flame retardant academic conference proceedings. (2010) 5-11.

Google Scholar

[10] P.R. Patwardhan, J.A. Satrio, R.C. Brown, Influence of inorganic salts on the primary pyrolysis products of cellulose, Bioresour. Technol. 101 (2010) 4646-4655.

DOI: 10.1016/j.biortech.2010.01.112

Google Scholar