[1]
W. Eerenstein, N. D. Mathur, Multiferroic and magnetoelectric materials, J. F. Scott, Nat. Rev., 2006, 442, 759-765(05023).
DOI: 10.1038/nature05023
Google Scholar
[2]
J. Wang, et al, Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures, Sci., 2003, 299, 1719-1722(1080615).
Google Scholar
[3]
Gustau Catalan, James F. Scott, Adv. Mater. , Physics and Applications of Bismuth Ferrite, 2009, 21, 1–23(200802849).
Google Scholar
[4]
Kiselev, S. V., Ozerov, R. P., Zhdanov, G. S., Detection of Magnetic Order in Ferroelectric BiFeO3 by Neutron Diffraction, Soviet Physics - Doklady, 1963, l7, 742–744.
Google Scholar
[5]
Teague, J. R., Gerson, R., James, W. J., Dielectric hysteresis in single crystal BiFeO3, Solid State Commun., 1970, 8, 1073–1074.
DOI: 10.1016/0038-1098(70)90262-0
Google Scholar
[6]
M. M. Kuma r, V. R. Palkar , K. Srinivas, S. V. Suryana rayana, Ferroelectricity in a pure BiFeO3 ceramic, Appl. Phys. Lett., 2000, 76, 1-6, 2764.
DOI: 10.1063/1.126468
Google Scholar
[7]
Adelina Ianculescu, et al, The role of doping on the structural and functional properties of BiFe1−xMnxO3 magnetoelectric ceramics, J. Alloys Compd., 2010, 504, 420–426.
DOI: 10.1016/j.jallcom.2010.05.135
Google Scholar
[8]
R. Haumont, et al, Centimeter-size BiFeO3 single crystals grown by flux method, Phase Transitions, 2008, 81, 881-888.
DOI: 10.1080/01411590802328642
Google Scholar
[9]
Jun Chen, Rapid Synthesis of Multiferroic BiFeO3 Single-Crystalline Nanostructures, Chem. Mater., 2007, 19, 3598-3600.
Google Scholar
[10]
Jian-Li Mi, High-Temperature and High-Pressure Aqueous Solution Formation, Growth, Crystal Structure, and Magnetic Properties of BiFeO3 Nanocrystals, Chem. Mater., 2011, 23, 1158-1165.
DOI: 10.1021/cm102575w
Google Scholar
[11]
Alexei A. Belik, Structure and Magnetic Properties of BiFe0. 75Mn0. 25O3 Perovskite Prepared at Ambient and High Pressure, Chem. Mater., 2011, 23, 4505–4514.
Google Scholar
[12]
Xuehang Wu, Preparation of nanocrystalline BiFeO3 via a simple and novel method and its kinetics of crystallization, J. Therm. Anal. Calorim., 2012, 107, 625–632.
DOI: 10.1007/s10973-011-1483-z
Google Scholar
[13]
Ying-Hao Chu, Domain Control in Multiferroic BiFeO3 through Substrate Vicinality, Adv. Mater., 2007, 19, 2662–2666(200602972).
DOI: 10.1002/adma.200602972
Google Scholar
[14]
S. Karimi, Nd-doped BiFeO3 ceramics with antipolar order, Appl. Phys. Lett., 2009, 94, 1-3, 112903.
DOI: 10.1063/1.3097222
Google Scholar
[15]
Yu-Jie Wu, Structural transitionandenhancedmagnetizationinBi1-xYxFeO3, J. Magn. Magn. Mater., 2012, 324, 1348–1352.
Google Scholar
[16]
Y.A. Chaudhari, Multiferroic properties in BiFe1−xZnxO3 (x = 0. 1–0. 2) ceramics by solution combustion method (SCM), J. Alloys Compd., 2012, 518, 51–57.
DOI: 10.1016/j.jallcom.2011.12.122
Google Scholar
[17]
C. Yang, Magnetic and dielectric properties of alkaline earth Ca2+ and Ba2+ ions co-doped BiFeO3 nanoparticles, J. Magn. Magn. Mater., 2012, 324, 1483–1487.
DOI: 10.1016/j.jmmm.2011.11.033
Google Scholar
[18]
O. D. Jayakumar, Theoretical and experimental evidence of enhanced ferromagnetism in Ba and Mn cosubstituted BiFeO3, Appl. Phys. Lett., 2010, 96, 1-3 , 032903.
DOI: 10.1063/1.3280043
Google Scholar
[19]
Poonam Uniyal, Enhanced magnetoelectric properties in Bi0. 95Ho0. 05FeO3 polycrystalline ceramics, J. Alloys Compd., 2012, 511, 149– 153.
DOI: 10.1016/j.jallcom.2011.09.012
Google Scholar
[20]
V.A. Khomchenko, Effect of Sm substitution on ferroelectric and magnetic properties of BiFeO3, Scripta Mater., 2010, 62, 238–241.
DOI: 10.1016/j.scriptamat.2009.11.005
Google Scholar