[1]
R. Cabrera-Sierra, E. Sosa, M.T. Oropeza, I. Gonzalez, Electrochemical study on carbon steel corrosion process in alkaline sour media, Electrochim. Acta 47 (2002) 2149–2158.
DOI: 10.1016/s0013-4686(02)00090-7
Google Scholar
[2]
H. Vedage, T.A. Ramanarayanan, J.D. Mumford, S.N. Smith, Electrochemical growth of iron sulfide films in H2S-saturated chloride media, Corrosion 49 (2) (1993) 114–121.
DOI: 10.5006/1.3299205
Google Scholar
[3]
Z.A. Foroulis, Role of solution pH on wet H2S cracking in hydrocarbon production, Corros. Prev. Control 8 (1993) 84–89.
Google Scholar
[4]
T. Junwen, S. Yawei, Z. Tao, M. Guozhe, W. Fuhui, Corrosion behaviour of carbon steel in different concentrations of HCl solutions containing H2S at 90 °C, Corr. Sci. 53 (2011) 1715–1723.
DOI: 10.1016/j.corsci.2011.01.041
Google Scholar
[5]
Q.B. Zhang, Y.X. Hua, Corrosion inhibition of mild steel by alkylimidazolium ionic liquids in hydrochloric acid, Electrochim. Acta 54 (2009) 1881–1887.
DOI: 10.1016/j.electacta.2008.10.025
Google Scholar
[6]
E. Machnikova, K.H. Whitmire, N. Hackerman, Corrosion inhibition of carbon steel in hydrochloric acid by furan derivatives, Electrochim. Acta 53 (2008) 6024–6032.
DOI: 10.1016/j.electacta.2008.03.021
Google Scholar
[7]
W. Li, Q. He, C. Pei, B. Hou, Experimental and theoretical investigation of the adsorption behaviour of new triazole derivatives as inhibitors for mild steel corrosion in acid media, Electrochim. Acta 52 (2007) 6386–6394.
DOI: 10.1016/j.electacta.2007.04.077
Google Scholar
[8]
M.A. Amin, S.S. Abd El-Rehim, E.E.F. El-Sherbini, R.S. Bayoumi, The inhibition of low carbon steel corrosion in hydrochloric acid solutions by succinic acid: Part I. Weight loss, polarization, EIS, PZC, EDX and SEM studies, Electrochim. Acta 52 (2007).
DOI: 10.1016/j.electacta.2006.10.019
Google Scholar
[9]
S. Ramazan, Investigation of the inhibition effect of 5-(E)-4-phenylbuta-1, 3-dienylideneamino)-1, 3, 4-thiadiazole-2-thiol Schiff base on mild steel corrosion in hydrochloric acid. Corr. Sci. 52 (2010) 3321–3330.
DOI: 10.1016/j.corsci.2010.06.001
Google Scholar
[10]
M. G. Hosseini, M. R. Arshadi, Study of 2-butyne-1, 4-diol as Acid Corrosion Inhibitor for Mild Steel with Electrochemical, Infrared and AFM Techniques, Int. J. Electrochem. Sci., 4 (2009) 1339 – 1350.
Google Scholar
[11]
G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope. Phys. Lett. Rev. 56 (1986) 930–933.
DOI: 10.1103/physrevlett.56.930
Google Scholar
[12]
G. Binnig, H. Rohrer, Ch Gerber. E. Weibel, 7 × 7 reconstruction on Si(111) resolved in real space. Phys. Rev. Lett. 50 (1983) 120.
DOI: 10.1103/physrevlett.50.120
Google Scholar
[13]
G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 1982, 49, 57.
DOI: 10.1103/physrevlett.49.57
Google Scholar
[14]
D. Kojic, R. Mitrovic, L. Matija, Dj. Koruga, Magnetic Force Microscopy Application in Steel Structure and Milling Process Parameters Evaluation Materials and Manufacturing Processes, 24 (2009)1168–1172.
DOI: 10.1080/10426910903031800
Google Scholar
[15]
A. Miller, Y. Estrin, X.Z. Hu, Magnetic force microscopy of fatigue crack tip region in a 316L austenitic stainless steel. Scr. Mater. 47 (2002) 441–446.
DOI: 10.1016/s1359-6462(02)00138-0
Google Scholar
[16]
S. Tomic, L. Matija, D. Kojic , Lj. Petrov, Dj. Koruga, Surface Characterisation of Alloys by Opto-Magnetic Fingerprint YUCOMAT, Herceg Novi, Crna Gora, 2008, Book of Abstracts, p.76., ISBN 978-86-80321-15-8.
Google Scholar
[17]
P. Ronak Corrosion Damage Studies Through Microscopy and Stress Analysis, Master of Science Thesis in Mechanical Engineering, Virginia Commonwealth University, Richmond, Virginia December, (2008).
Google Scholar
[18]
D. Koruga, A. Tomić, System and Method for Analysis of Light-matter Interaction Based on Spectral Convolution, US Patent Pub. No.: 2009/0245603, (2009).
Google Scholar
[19]
JEOL Instruction manual, (2005).
Google Scholar