Nanoscale Material Characterization under the Influence of Aggressive Agents by Magnetic Force Microscopy and Opto-Magnetic Spectroscopy

Article Preview

Abstract:

Magnetic Force Microscopy (MFM) and Opto-Magnetic Spectroscopy (OMS) were used to characterize HTCV stainless steel and aluminum. Both materials were immersed in 1.0M HCl and 1.0M CH3COOH solutions for two hours. From the OMS method it was discovered that treated materials showed differences in peak wavelengths. Topographical and magnetic features for steel plate samples showed better resistance to an aggressive medium compared to aluminum. The results and analysis of these investigations are compared and presented in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

209-223

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Cabrera-Sierra, E. Sosa, M.T. Oropeza, I. Gonzalez, Electrochemical study on carbon steel corrosion process in alkaline sour media, Electrochim. Acta 47 (2002) 2149–2158.

DOI: 10.1016/s0013-4686(02)00090-7

Google Scholar

[2] H. Vedage, T.A. Ramanarayanan, J.D. Mumford, S.N. Smith, Electrochemical growth of iron sulfide films in H2S-saturated chloride media, Corrosion 49 (2) (1993) 114–121.

DOI: 10.5006/1.3299205

Google Scholar

[3] Z.A. Foroulis, Role of solution pH on wet H2S cracking in hydrocarbon production, Corros. Prev. Control 8 (1993) 84–89.

Google Scholar

[4] T. Junwen, S. Yawei, Z. Tao, M. Guozhe, W. Fuhui, Corrosion behaviour of carbon steel in different concentrations of HCl solutions containing H2S at 90 °C, Corr. Sci. 53 (2011) 1715–1723.

DOI: 10.1016/j.corsci.2011.01.041

Google Scholar

[5] Q.B. Zhang, Y.X. Hua, Corrosion inhibition of mild steel by alkylimidazolium ionic liquids in hydrochloric acid, Electrochim. Acta 54 (2009) 1881–1887.

DOI: 10.1016/j.electacta.2008.10.025

Google Scholar

[6] E. Machnikova, K.H. Whitmire, N. Hackerman, Corrosion inhibition of carbon steel in hydrochloric acid by furan derivatives, Electrochim. Acta 53 (2008) 6024–6032.

DOI: 10.1016/j.electacta.2008.03.021

Google Scholar

[7] W. Li, Q. He, C. Pei, B. Hou, Experimental and theoretical investigation of the adsorption behaviour of new triazole derivatives as inhibitors for mild steel corrosion in acid media, Electrochim. Acta 52 (2007) 6386–6394.

DOI: 10.1016/j.electacta.2007.04.077

Google Scholar

[8] M.A. Amin, S.S. Abd El-Rehim, E.E.F. El-Sherbini, R.S. Bayoumi, The inhibition of low carbon steel corrosion in hydrochloric acid solutions by succinic acid: Part I. Weight loss, polarization, EIS, PZC, EDX and SEM studies, Electrochim. Acta 52 (2007).

DOI: 10.1016/j.electacta.2006.10.019

Google Scholar

[9] S. Ramazan, Investigation of the inhibition effect of 5-(E)-4-phenylbuta-1, 3-dienylideneamino)-1, 3, 4-thiadiazole-2-thiol Schiff base on mild steel corrosion in hydrochloric acid. Corr. Sci. 52 (2010) 3321–3330.

DOI: 10.1016/j.corsci.2010.06.001

Google Scholar

[10] M. G. Hosseini, M. R. Arshadi, Study of 2-butyne-1, 4-diol as Acid Corrosion Inhibitor for Mild Steel with Electrochemical, Infrared and AFM Techniques, Int. J. Electrochem. Sci., 4 (2009) 1339 – 1350.

Google Scholar

[11] G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope. Phys. Lett. Rev. 56 (1986) 930–933.

DOI: 10.1103/physrevlett.56.930

Google Scholar

[12] G. Binnig, H. Rohrer, Ch Gerber. E. Weibel, 7 × 7 reconstruction on Si(111) resolved in real space. Phys. Rev. Lett. 50 (1983) 120.

DOI: 10.1103/physrevlett.50.120

Google Scholar

[13] G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 1982, 49, 57.

DOI: 10.1103/physrevlett.49.57

Google Scholar

[14] D. Kojic, R. Mitrovic, L. Matija, Dj. Koruga, Magnetic Force Microscopy Application in Steel Structure and Milling Process Parameters Evaluation Materials and Manufacturing Processes, 24 (2009)1168–1172.

DOI: 10.1080/10426910903031800

Google Scholar

[15] A. Miller, Y. Estrin, X.Z. Hu, Magnetic force microscopy of fatigue crack tip region in a 316L austenitic stainless steel. Scr. Mater. 47 (2002) 441–446.

DOI: 10.1016/s1359-6462(02)00138-0

Google Scholar

[16] S. Tomic, L. Matija, D. Kojic , Lj. Petrov, Dj. Koruga, Surface Characterisation of Alloys by Opto-Magnetic Fingerprint YUCOMAT, Herceg Novi, Crna Gora, 2008, Book of Abstracts, p.76., ISBN 978-86-80321-15-8.

Google Scholar

[17] P. Ronak Corrosion Damage Studies Through Microscopy and Stress Analysis, Master of Science Thesis in Mechanical Engineering, Virginia Commonwealth University, Richmond, Virginia December, (2008).

Google Scholar

[18] D. Koruga, A. Tomić, System and Method for Analysis of Light-matter Interaction Based on Spectral Convolution, US Patent Pub. No.: 2009/0245603, (2009).

Google Scholar

[19] JEOL Instruction manual, (2005).

Google Scholar