New α-Glucosidase Inhibitory Polysaccharides Isolated from Marine Green Algae Enteromorpha Linza

Article Preview

Abstract:

The crude polysaccharides were extracted by hot water from marine green algae Enteromorpha linza. After that, five polysaccharides were obtained through Q-Sepharose Fast Flow chromatography. Their structures and monosaccharide compositions were analyzed by FTIR and GC-MS. Mannose was the abundant monosaccharide in both ELP-3 and ELP-4. ELP-3 consisted of mannose, L(-)-fucose, D-glucose, D-galactose, D-arabinose and D-xylose in a molar ratio of 1.00:0.66:0.46:0.41:0.27:0.19. In α-glucosidase inhibition assay, the polysaccharides showed significant inhibitory activities. ELP-3 (IC50 =0.36 mg/mL) exhibited much stronger inhibitory effect against α-glucosidase, compared with Acarbose (IC50=0.46 mg/mL), while ELP-4, a similar inhibitory effect (IC50=0.58 mg/mL) as Acarbose. Moreover, it was found that EPLs have moderate antioxidant activities in 1,1-diphenyl-2-picrylhydrazil (DPPH) scavenging experiment.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

1010-1015

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. H. Zargar, A. I. Wani, S. R. Masoodi, B. A. Laway and M. I. Bashir: Diabetes. Res. Clin. Pr. Vol. 43 (1999), p.67.

Google Scholar

[2] X. P. Ye, C. Q. Song, P. Yuan and R. G. Mao: Chin. J. Nat. Med. Vol. 8 (2010), p.0349.

Google Scholar

[3] Q. Han, Q. Y. Yu, J. Shi, C. Y. Xiong, Z. J. Ling and P. M. He: Carbohyd. Polym. Vol. 86 (2011), p.797.

Google Scholar

[4] L. L. Jiao, X. Li, T. B. Li, P. Jiang, L. X. Zhang, M. J. Wu and L. P. Zhang: Int. Immunopharmacol. Vol. 9 (2009), p.324.

Google Scholar

[5] D. L. Qiao, C. L. Ke, B. Hu, J. G. Luo, H. Ye, Y. Sun, X. Y. Yan and X. X. Zeng: Carbohyd. Polym. Vol. 78 (2009), p.199.

Google Scholar

[6] Q. He , X. B. Hu, S. M. Zhou and X. Y. Wang: Mar. Sci., Vol. 30 (2006), p.34.

Google Scholar

[7] M. G. Sevag, D. B. Lackman and J. Smolens: J. Biol. Chem. Vol. 124 (1938), p.425.

Google Scholar

[8] M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers and F. Smith: Anal. Chem. Vol. 28 (1956), p.350.

Google Scholar

[9] Y. F. Wang, Z. W. Yang and X. L. Wei: Int. J. Biol. Macromol. Vol. 47 (2010), p.534.

Google Scholar

[10] J. H. Xie, M. Y. Xie, S. P. Nie, M. Y. Shen, Y. X. Wang and C. Li: Food Chem. Vol. 119 (2010), p.1626.

Google Scholar

[11] X. C. Li, R. L. Niu, X. Fan, L. J. Han and L. X. Zhang: Chin. J. Oceanol. Limn. Vol. 23 (2005), p.354.

Google Scholar

[12] K. Shimada, K. Fujikawa, K. Yahara and T. Nakamura: J. Agric. food Chem. Vol. 40 (1992), p.945.

Google Scholar

[13] K. Chattopadhyay, P. Mandal, P. Lerouge, A. Driouich, P. Ghosal and B. Ray: Food Chem. Vol. 104 (2007), p.928.

Google Scholar

[14] B. Ray: Carbohyd. Polym. Vol. 66 (2006), p.408.

Google Scholar

[15] L. L. Jiao, X. Li, T. B. Li, P. Jiang, L. X. Zhang, M. J. Wu and L. P. Zhang: Int. Immunopharmacol. Vol. 9 (2009), p.324.

Google Scholar

[16] Y. Ge , Y. F. Duan, G. Z. Fang, Y. Zhang, S. Wang: Carbohyd. Polym. Vol. 77 (2009), p.188.

Google Scholar

[17] I. M. Aparicio, C. M. Peinado, A. J. Escrig and P. Rupérez: Carbohyd. Polym. Vol. 82 (2010), p.245.

Google Scholar

[18] F. L. Kong, M. W. Zhang, R. B. Kuang, S. J. Yu, J. W. Chi and Z. C. Wei: Carbohyd. Polym. Vol. 81 (2010), p.612.

Google Scholar

[19] X. L. Wei, M. A. Chen, J. B. Xiao, Y. Liu, L. Yu, H. Zhang and Y. F. Wang: Carbohyd. Polym. Vol. 79 (2010), p.418.

Google Scholar