Thermodynamical Study on Rare Earth L-Isoleucine Chlorate Complexes [RE2(lle)4(H2O)8](ClO4)6 (RE = Nd, Er)

Article Preview

Abstract:

Using perchloric acid, Nd2O3, Er2O3 and L-isoleucine (Ile) as raw materials, two crys-talline compounds of rare earth isoleucine chlorate, [Nd2(Ile)4(H2O)8](ClO4)6 and [Er2(Ile)4(H2O)8](ClO4)6, were synthesized. Their compositions were determined after chemical analysis, IR spectrum study, thermogravimetric (TG) and differential thermal analysis (DTA). By using the RD496-2000 microcalorimeter, the standard enthalpies of formation of the synthesized compounds were obtained according to a pre-designed thermal cycle. Four sets of TG data with different heating rates (2.5 K•min-1, 5 K•min-1, 10 K•min-1 and 15 K•min-1) were obtained. After the exploration of the kinetic data in the non-isothermal thermal decomposition process, the activation energy E, the logarithm of the pre-exponential factor lnA, the reaction order n, and the dynamical equation of the water loss step were derived. Ozawa method was also used to test the obtained dy-namical data.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

1196-1210

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. X. Liu, X. D. Yang and K. Wang: J. Chin. Rare Earth Soc. Vol. 25 (2007), p.102.

Google Scholar

[2] P. Liu, Y. Liu, X. Li, et al: Biol. Trace Elem. Res. Vol. 121 (2008), p.80.

Google Scholar

[3] H. Yang: Chin. Rare Earths Vol. 28(2007), p.95.

Google Scholar

[4] J. J. Zhao, W. C. Yang, X. Q. Wang, et al: Polyhedron Vol. 14 (1995), p.2451.

Google Scholar

[5] X. M. Wu, W. Li, Z. C. Tan, et al: Sci. China Ser. B Vol. 52 (2009), p.862.

Google Scholar

[6] S. L. Gao, S. P. Chen, Y. X. Ren, et al: Chem. J. Chin. Univ. Vol. 25 (2004), p.1537.

Google Scholar

[7] R. Z. Hu, J. R. Song, F. P. Li, et al: Thermochim. Acta Vol. 299 (1997), p.87.

Google Scholar

[8] A. Z. Ma, L. M. Li, S. Q. Xi: Chin. J. Appl. Chem. Vol. 12 (1995), p.48.

Google Scholar

[9] J. A. Dean: Lange's Handbook of Chemistry, 12th ed. (McGraw-Hill book Co., New York 1979).

Google Scholar

[10] J. D. Cox, D. D. Wagman, V. A. Medvedev: CODATA Key Values for Thermodynamics; (Hemisphere Publishing Co., New York 1984).

Google Scholar

[11] D. Q. Wu, Y. H. Zhu, Z. M. Gao, et al: J. Wuhan Univ. Vol. 3 (1993), p.78.

Google Scholar

[12] X. M. Wu, J. H. Liu, W. Li, et al: Acta Phys. -Chim. Sin. Vol. 22 (2006), p.942.

Google Scholar

[13] Z. H. Zhang, Z. J. Ku, F. Xia, et al: Acta Chim. Sin. Vol. 62 (2004), p.386.

Google Scholar

[14] R. Z. Hu, S. L. Gao, F. Q. Zhao, et al: Thermal Analysis Kinetics, 2nd ed. (Science Press, Beijing 2008).

Google Scholar

[15] X. Y. Hou, X. Wang, D. S. Li, et al: Chemistry and Biology Vol. 6 (2009), p.27.

Google Scholar

[16] Y. H. Xing, H. Q. Yuan, Y. H. Zhang, et al: Chem. J. Chin. Univ. Vol. 27 (2006), p.1205.

Google Scholar

[17] Z. H. Zhang, Y. X. Zhou, H. R. Li, et al: J. Wuhan Univ. (Nat. Sci. Ed. ) Vol. 51 (2005), p.426.

Google Scholar

[18] J. J. Zhang, R. F. Wang and S. P. Wang: Chin. J. Inorg. Chem. Vol. 17 (2001), p.297.

Google Scholar

[19] X. F. Wang, P. H. Zhu and T. S. Sun: Chin. J. Appl. Chem. Vol. 22 (2005), p.55.

Google Scholar

[20] Y. J. Kang, D. X. Liu, S. L. Li, et al: Acta Chim. Sin. Vol. 54 (1996), p.893.

Google Scholar

[21] K. Y. Kim and C. E. Johnson: J. Chem. Thermodyn. Vol. 13 (1981), p.13.

Google Scholar