Effects of Extrusion Methods and Powder Carriers on Powder Forming and Precursor Foaming Behavior in the Preparation Process of Aluminum Foam

Article Preview

Abstract:

Aluminum foam is a new type of material that can be used in many fields. Compaction conditions are the most important parameters that have influence on foam preparation process. So in this paper, detailed researches about extrusion methods and powder carriers are conducted. The results show that: compare with direct extrusion, pre-pressing can effectively eliminate the influences of hydrogen, obtain high density precursors. However, when the flank of the precursor is wrapped with copper, H2 can escape from the combination parts of Al and Cu, in early foaming stage. The minimum density is only 0.75g/cm3, pore structures are almost round and nearly no plateau borders exist, so the quality of aluminum foam is still poor. When there is no copper wrapped, an oxide layer can be formed in the whole body of the precursor and limit the escaping of H2. The minimum density can reach 0.45g/cm3, pore structures are polygonal with thin cell walls about 0.08mm. Thus high quality aluminum foams can be obtained by using pre-pressing and then extruding method and precursor sheet powder carrier.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

1734-1739

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Banhart, J.: Manufacture, characterization and application of cellular metals and metal foams. Prog. Mater. Sci. 2001;46:559–632.

DOI: 10.1016/s0079-6425(00)00002-5

Google Scholar

[2] J.Banhart, M.F. Ashby, N.A. Fleck. Metal Foams and Porous Metal Structures[A], In:International Conference on Metal Foams and Porous Metal Structures, Bermen, 2003, Verlag MIT, 2006.

Google Scholar

[3] Baumga¨rtner F, Duarte I, Banhart J. Industrialisation of P/M foaming process[J]. Adv Eng Mater 2000;2:168–74.

Google Scholar

[4] Baumeister J, Banhart J, Weber M. Aluminum foams for transport industry [J]. Materials&Design, 1997, 18(4):217-220.

DOI: 10.1016/s0261-3069(97)00050-2

Google Scholar

[5] Schwingel D, Seeliger H W, Vecchionacci C, Alwes D, Dittrich J. Aluminium foam sandwich structures for space applications[J].Acta Astronaut,2007,61:326-330.

DOI: 10.1016/j.actaastro.2007.01.022

Google Scholar

[6] Fuganti A, Lorenzi L, Hanssen A G, Langseth M. Aluminium foam for automotive applications[J].Adv Eng Mater,2002,2(4):200-204.

DOI: 10.1002/(sici)1527-2648(200004)2:4<200::aid-adem200>3.0.co;2-2

Google Scholar

[7] Zeppelin F V, H irscherM, Stanzick H,et al. Desorption of hydrogen from blowing agents used for foam ing metals [ J].Composites Science and Technology, 2003, 63 (16): 2293-2300.

DOI: 10.1016/s0266-3538(03)00262-8

Google Scholar

[8] Louis-Philippe Lefebvre,John Banhart and David C.Dunad. Porous Metal and Metallic Foams:Current Status and Recent Developments. Advanced Engineering Materials[A],2008:775-787.

DOI: 10.1002/adem.200800241

Google Scholar

[9] Zhiqiang Guo, Guangchun Yao, Yihan Liu. A study of stability of foam aluminum by powder metallurgy method[J]. Aluminum Alloys for Transportation, Packaging, Aerospace, and Other Applications, 2007, 171-76.

Google Scholar

[10] E. Solórzano, F. Garcia-Moreno, N. Babcsán, J. Banhart. Thermographic Monitoring of Aluminium Foaming Process[J]. J Nondestruct Eval (2009) 28: 141–148.

DOI: 10.1007/s10921-009-0056-6

Google Scholar

[11] M. Mukherjee, F. Garcia-Moreno, J. Banhart. Collapse of Aluminum Foam in Two Different Atmospheres[J]. Metallurgical and Materials transctions B,2010,41B(6):500-504.

DOI: 10.1007/s11663-010-9357-5

Google Scholar

[12] Han F, Zhu Z, Gao J, Song W. Effect of oxidation treatment and surface filming on hydrogen degassing from TiH2[J]. Metall Trans B 1998;29:1315-1319.

DOI: 10.1007/s11663-998-0055-5

Google Scholar

[13] Gergely V. Metal route processing for production of metallic foams. Ph.D. thesis, Cambridge, UK: University of Cambridge; 2000.

Google Scholar

[14] KennedyA R. The effect of THi2 heat treatment on gas release and foaming in Al-THi2 preforms[J]. Scripta Materialia,2002, 47(11): 763-767.

DOI: 10.1016/s1359-6462(02)00281-6

Google Scholar

[15] Lehmhus D, Rausch G. Tailoring titanium hydride decomposition kinetics by annealing in various atmospheres[J]. Adv Eng Mater 2004;6:313-330.

DOI: 10.1002/adem.200300572

Google Scholar

[16] Matijasevic-Lux B, Banhart J, Fiechter S,et al. Modification of titanium hydride for improved aluminium foam manufacture[J]. Acta Materialia, 2006, 54: 1887-1900.

DOI: 10.1016/j.actamat.2005.12.012

Google Scholar

[17] G.S. Vinod Kumar, M. ChakrabortY, F. GAarci-Moreno, J. Banhart. Foamability of MgAl2O4 (Spinel)-Reinforced Aluminum Alloy Composites [J]. Metallurgical and materials transactions A, 2011(42A):2898-2908.

DOI: 10.1007/s11661-011-0709-9

Google Scholar

[18] H.-M. Helwig, F. Garcia-Moreno, J. Banhart. A study of Mg and Cu additions on the foaming behaviour of Al–Si alloys[J]. J Mater Sci, 2011, 46:5227-5236.

DOI: 10.1007/s10853-011-5460-5

Google Scholar