[1]
Banhart, J.: Manufacture, characterization and application of cellular metals and metal foams. Prog. Mater. Sci. 2001;46:559–632.
DOI: 10.1016/s0079-6425(00)00002-5
Google Scholar
[2]
J.Banhart, M.F. Ashby, N.A. Fleck. Metal Foams and Porous Metal Structures[A], In:International Conference on Metal Foams and Porous Metal Structures, Bermen, 2003, Verlag MIT, 2006.
Google Scholar
[3]
Baumga¨rtner F, Duarte I, Banhart J. Industrialisation of P/M foaming process[J]. Adv Eng Mater 2000;2:168–74.
Google Scholar
[4]
Baumeister J, Banhart J, Weber M. Aluminum foams for transport industry [J]. Materials&Design, 1997, 18(4):217-220.
DOI: 10.1016/s0261-3069(97)00050-2
Google Scholar
[5]
Schwingel D, Seeliger H W, Vecchionacci C, Alwes D, Dittrich J. Aluminium foam sandwich structures for space applications[J].Acta Astronaut,2007,61:326-330.
DOI: 10.1016/j.actaastro.2007.01.022
Google Scholar
[6]
Fuganti A, Lorenzi L, Hanssen A G, Langseth M. Aluminium foam for automotive applications[J].Adv Eng Mater,2002,2(4):200-204.
DOI: 10.1002/(sici)1527-2648(200004)2:4<200::aid-adem200>3.0.co;2-2
Google Scholar
[7]
Zeppelin F V, H irscherM, Stanzick H,et al. Desorption of hydrogen from blowing agents used for foam ing metals [ J].Composites Science and Technology, 2003, 63 (16): 2293-2300.
DOI: 10.1016/s0266-3538(03)00262-8
Google Scholar
[8]
Louis-Philippe Lefebvre,John Banhart and David C.Dunad. Porous Metal and Metallic Foams:Current Status and Recent Developments. Advanced Engineering Materials[A],2008:775-787.
DOI: 10.1002/adem.200800241
Google Scholar
[9]
Zhiqiang Guo, Guangchun Yao, Yihan Liu. A study of stability of foam aluminum by powder metallurgy method[J]. Aluminum Alloys for Transportation, Packaging, Aerospace, and Other Applications, 2007, 171-76.
Google Scholar
[10]
E. Solórzano, F. Garcia-Moreno, N. Babcsán, J. Banhart. Thermographic Monitoring of Aluminium Foaming Process[J]. J Nondestruct Eval (2009) 28: 141–148.
DOI: 10.1007/s10921-009-0056-6
Google Scholar
[11]
M. Mukherjee, F. Garcia-Moreno, J. Banhart. Collapse of Aluminum Foam in Two Different Atmospheres[J]. Metallurgical and Materials transctions B,2010,41B(6):500-504.
DOI: 10.1007/s11663-010-9357-5
Google Scholar
[12]
Han F, Zhu Z, Gao J, Song W. Effect of oxidation treatment and surface filming on hydrogen degassing from TiH2[J]. Metall Trans B 1998;29:1315-1319.
DOI: 10.1007/s11663-998-0055-5
Google Scholar
[13]
Gergely V. Metal route processing for production of metallic foams. Ph.D. thesis, Cambridge, UK: University of Cambridge; 2000.
Google Scholar
[14]
KennedyA R. The effect of THi2 heat treatment on gas release and foaming in Al-THi2 preforms[J]. Scripta Materialia,2002, 47(11): 763-767.
DOI: 10.1016/s1359-6462(02)00281-6
Google Scholar
[15]
Lehmhus D, Rausch G. Tailoring titanium hydride decomposition kinetics by annealing in various atmospheres[J]. Adv Eng Mater 2004;6:313-330.
DOI: 10.1002/adem.200300572
Google Scholar
[16]
Matijasevic-Lux B, Banhart J, Fiechter S,et al. Modification of titanium hydride for improved aluminium foam manufacture[J]. Acta Materialia, 2006, 54: 1887-1900.
DOI: 10.1016/j.actamat.2005.12.012
Google Scholar
[17]
G.S. Vinod Kumar, M. ChakrabortY, F. GAarci-Moreno, J. Banhart. Foamability of MgAl2O4 (Spinel)-Reinforced Aluminum Alloy Composites [J]. Metallurgical and materials transactions A, 2011(42A):2898-2908.
DOI: 10.1007/s11661-011-0709-9
Google Scholar
[18]
H.-M. Helwig, F. Garcia-Moreno, J. Banhart. A study of Mg and Cu additions on the foaming behaviour of Al–Si alloys[J]. J Mater Sci, 2011, 46:5227-5236.
DOI: 10.1007/s10853-011-5460-5
Google Scholar