Effects of Rolling Temperature on Through-Thickness Deformation and Recrystallization Textures in Heavily Rolled Silicon Steel

Article Preview

Abstract:

The silicon steel was rolled to 95% reduction at 20°C, 400°C and 600°C, and subsequently annealed at different temperatures to obtain complete recrystallization microstructure without appreciable grain growth. The effects of rolling temperature on through-thickness deformation and recrystallization textures were investigated by ODF analysis. The deformation textures are all composed of α- and γ-fiber, whereas α-fiber and {111}﹤110﹥ decrease and {111}﹤112﹥ increases with the increasing rolling temperature. Through-thickness recrystallization texture varied significantly, a strong partial γ-fiber spreading from {111}﹤112﹥ or {554}﹤225﹥ to {111}﹤134﹥ and {114}﹤481﹥ are developed in steel sheet rolled at 20°C and 400°C, while a dominated η-fiber peaked at {310}﹤001﹥ is formed between surface and quarter thickness in steel sheet rolled at 600°C. The different recrystallization textures can be ascribed to the profuse shear band at 600°C compared with the microstructures at 20°C and 400°C.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

1729-1733

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Saha, R.K. Ray: ISIJ Int. Vol. 48 (2008), p.973.

Google Scholar

[2] R. Saha, R.K. Ray: Mater. Sci. Eng. A Vol. 527 (2010), p.1882.

Google Scholar

[3] P. Gobernado, R. Petrov, D. Ruiz and E. Leunis: Mater. Sci. Forum Vol. 638-642 (2010), p.2829.

Google Scholar

[4] P. Gobernado, R. Petrov, D. Ruiz and E. Leunis: Adv. Eng. Mater. Vol. 12 (2010), p.1077.

Google Scholar

[5] L.A.I. Kestens, R. Petrov, P. Gobernado and E. Leunis: Solid State Phenom. Vol. 160 (2010), p.23.

Google Scholar

[6] M. Barnett, J. Jonas: ISIJ Int. Vol. 37 (1997), p.697.

Google Scholar

[7] M.R. Toroghinejad, F. Ashrafizadeh, A. Najafizadeh and A.O. Humphreys: Metall. Mater. Trans. A Vol. 34 (2003), p.1163.

Google Scholar

[8] A. Duckham, R.D. Knutsen, O. Engler: Acta Mater. Vol. 49 (2001), p.2739.

Google Scholar

[9] A.N. Belyakov, I.Y. Kazakulov, R.D. Kaybyshev and B.K. Sokolov: Phys. Met. Metallogr. Vol. 79 (1995), p.188.

Google Scholar

[10] S.N. Lee, D.N. Lee: Int. J. Mech. Sci. Vol. 43 (2001), p. (1997).

Google Scholar

[11] T. Haratani, W.B. Hutchison, I.L. Dillamore and P. Bate: Met. Sci. Vol. 18 (1984), p.57.

Google Scholar

[12] K. Ushioda, W. Hutchinson: ISIJ Int. Vol. 29 (1989), p.862.

Google Scholar

[13] J.T. Park, J.A. Szpunar: Acta Mater. Vol. 51(2003), p.3037.

Google Scholar

[14] M.Z. Quadir, B.J. Duggan: Acta Mater. Vol. 52(2004), p.4011.

Google Scholar

[15] M.Z. Quadir, B.J. Duggan: Mater. Sci. Forum Vol. 495-497 (2005), p.489.

Google Scholar

[16] M.Z. Quadir, Y.Y. Tse, K.T. Lam and B.J. Duggan: Mater. Sci. Forum Vol. 467-470 (2004), p.311.

Google Scholar

[17] W.B. Hutchinson: Acta Metall. Vol. 37 (1989), p.1047.

Google Scholar

[18] H. Inagaki: Iron. Trans. Jpn. Inst. Met. Vol. 28 (1987), p.251.

Google Scholar