Preparation and Optical Properties of CuS Nanochains by a Solvothermal Method

Article Preview

Abstract:

CuS nanochains were prepared via a simple hydrothermal reaction at 140 °C for 12 h, employing Cu(Ac)2•H2O and Thiourea as reactants in the absence of any structure-directing agent. The size and morphology of CuS nanochains were characterized by means of X-ray diffraction (XRD) and Transmission electron microscope (TEM); the optical properties of CuS nanochains were investigated by UV–vis absorption spectrum and Fourier transform infrared (FT-IR) measurements. CuS nanochains were found to be constructed by covellite CuS with a hexagonal phase and composed of nanorods with 40-100 nm length and 25 nm Width. The UV–vis absorption of CuS was observed an increased absorption from 300nm to 650 nm and the band gap of CuS nanochains was 1.91 eV.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

2218-2221

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Xu, Z. Zhang, Q. Ye, X. Liu, Chem. Lett. Vol. 32 (2003), p.198.

Google Scholar

[2] Y.J. He, X.Y. Yu, X.L. Zhao, Mater. Lett. Vol. 61 (2007), p.3014.

Google Scholar

[3] H. Li, Y. Zhu, S. Avivi, O. Palchik, J. Xiong, Y. Koltypin, V. Palchik, A. Gedanken, J. Mater. Chem. Vol. 12 (2009), p.3723.

DOI: 10.1039/b206193g

Google Scholar

[4] C.H. Hsieh, L.J. Chou, G.R. Lin, Y. Bando, D. Golberg, Nano Lett. Vol. 8 (2008), p.3081.

Google Scholar

[5] Y. Lei, H. Jia, Z. Zheng, Y. Gao, X. Chen, H. Hou, Cryst. Eng. Comm. Vol. 13 (2011), p.6212.

Google Scholar

[6] J.C.W. Folmer, F. Jellinek, J. Less-Common Met. Vol. 76 (2008), p.153.

Google Scholar

[7] P.P. Paul, T.B. Rauchfuss, S.R. Wilson, J. Am. Chem. Soc. Vol. 115 (2003), p.3316.

Google Scholar

[8] Xu M, Wu H, Da P, Zhao D, Zheng G. Nanoscale. Vol. 4 (2012), p.1794.

Google Scholar

[9] Ezema F, Hile D, Ezugwu S, Osuji R, Asogwa P. J Ovonic Res. Vol. 6 (2010), p.99.

Google Scholar

[10] J. Yuan, K. Laubemds, Q. Zhang, S.L. Suib, J. Am. Chem. Soc. Vol. 125 (2003), p.4966.

Google Scholar

[11] Y.L. Hou, H.S. Kondoh, T.S.K. Ohta, Chem. Mater. Vol. 17 (2005), p.3994.

Google Scholar

[12] M. Basu, A.K. Sinha, M. Pradhan, S. Sarkar, Y. Negishi Govind, T. Tarasankarp, Environ. Sci. Technol. Vol. 44 (2010), p.6313.

Google Scholar

[13] J. Zhang, J. Wang, S. Zhou, K. Duan, B. Feng, J. Weng, H. Tang, P. Wu, J. Mater. Chem. Vol. 20 (2010), p.9798.

Google Scholar

[14] A. Etkus, A. Galdikas, A. Mironas, I. Simkiene, I. Ancutiene, V. Janickis, S. Kaciulis, G. Mattogno, G.M. Ingo, Thin Solid Films. Vol. 391 (2001), p.275.

DOI: 10.1016/s0040-6090(01)00995-6

Google Scholar

[15] B.X. Li, Y. Xie, Y. Xue, J. Phys. Chem. C. Vol. 111 (2007), p.12181.

Google Scholar

[16] X.H. Liao, N.Y. Chen, S. Xu, S.B. Yang, J.J. Zhu, J. Cryst. Growth. Vol. 252 (2003) p.593.

Google Scholar

[16] M.T. Qurashi, H.S. Blair, S.J. Allea, J. Appl. Polym. Sci. Vol. 46 (1992), p.255.

Google Scholar

[17] S.K. Haram, A.R. Mahadeshwar, S.G. Dixit, J. Phys. Chem. Vol. 100 (1996), p.5868.

Google Scholar