Rapid Synthesis of Non-Crosslinked and Monodisperse Polystyrene Microspheres

Article Preview

Abstract:

Non-crosslinked and monodisperse polystyrene (PS) microspheres showing uniform size were synthesized by using a dispersion polymerization technique in the presence of the Fenton reagent (FeSO4/H2O2) as an initiator. The effects of stabilizer dosage, monomer concentration, volume ratio of dispersion medium and reaction time on both the morphology and dispersity of PS microspheres were investigated. The results of transmission electron microscopy (TEM) and field emission scanning electron microscope (FESEM) indicated that the obtained PS microspheres are perfect with uniform size of about 170 nm under the optimum experimental condition. On the basis of the experimental results, the mechanism of PS polymerization was proposed, which should be helpful to guide the preparation of polymer microspheres with desired uniform size. In comparison with the conventional emulsion polymerization, this new synthesis technique with the Fenton reagent exhibits some advantages such as being a simple and fast polymerization process without deoxygenation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

2222-2227

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N.A. Wagdare, J. Baggerman and C.J.M. van Rijn: Chem. Eng. J. Vol. 175 (2011), p.561.

Google Scholar

[2] L. Han, Q. Suo and H. Hong: Prog. Chem. Vol. 20 (2008), p.931.

Google Scholar

[3] J.Q. Zhao, P. Wan, J. Xiang and H. Tong: Micropor Mesopor Mat. Vol. 138 (2011), p.200.

Google Scholar

[4] X. Li, F. Tao, Y. Jiang and Z. Xu: J. Colloid Interf. Sci. Vol. 308 (2007), p.460.

Google Scholar

[5] O.D. Velev and A.M. Lenhoff: Curr. Opin. Colloid In. Vol. 5 (2000), p.56.

Google Scholar

[6] Y. Cao, Y. Wang, Y. Zhu, H. Chen, Z. Li and Y. Chi: Superlattice. Microst. Vol. 40 (2006), p.155.

Google Scholar

[7] K. Sasahara, T. Hyodo, Y. Shimizu and M. Egashira: J. Eur. Ceram. Soc. Vol. 24 (2004), p. (1961).

Google Scholar

[8] Z.F. Liu, Z.G. Jin, W. Li, J.J. Qiu, J. Zhao and X.X. Liu: Appl. Surf. Sci. Vol. 252 (2006), p.5002.

Google Scholar

[9] A. Xiao, J. Yang and W. Zhang: J. Porous Mater. Vol. 17 (2010), p.283.

Google Scholar

[10] W. Li, Z.G. Jin, Z.F. Liu, J.L. Yang and J.J. Qiu: J. Inorg. Mater. Vol. 21 (2006), p.473.

Google Scholar

[11] D. Lan, Y. -R. Wang, Y. Yu, W. -J. Ma and C. Li: Chin. Phys. Vol. 16 (2007), p.468.

Google Scholar

[12] Z. Wang, J. Guan, S. Wu, C. Xu, Y. Ma and J. Lei, Q. Kan: Mater. Lett. Vol. 64 (2010), p.1325.

Google Scholar

[13] B.T. Holland, C.F. Blanford and A. Stein: Science Vol. 281 (1998), p.538.

Google Scholar

[14] X. Zhang, S. Shen and L. Fan: Polym. Bull. Vol. 61 (2008), p.19.

Google Scholar

[15] H. Bamnolker and S. Margel: J. Polym. Sci. Pol. Chem. Vol. 34 (1996), p.1857.

Google Scholar

[16] Y.W. Kang and K. Y: Water Res. Vol. 34 (2000), p.2786.

Google Scholar

[17] C.K. Ober, K.P. Lok and M.L. Hair: J. Polym. Sci. Pol. Lett. Vol. 23 (1985), p.103.

Google Scholar

[18] C.M. Tseng, Y.Y. Lu and J.W. Vanderhoff: J. Polym. Sci. Pol. Chem. Vol. 24 (1986), p.2995.

Google Scholar

[19] A. Tuncel and E. Piskin: Polym-Plast. Technol. Vol. 31 (1992), p.807.

Google Scholar