Synthesis of TiO2 Nanostructure by DC Reactive Magnetron Sputtering and Hydrothermal Technique

Article Preview

Abstract:

Anatase and rutile TiO2 nanostructure have been successfully synthesized via CD reactive magnetron sputtering and hydrothermal synthesis followed by post-treatment from titanium powder. The morphology and crystalline structure of the nanostructure are characterized in detail with X-ray diffraction (XRD), Field Emissiom Scanning Electron Microscope (FE-SEM), Scanning Electron Microscope (SEM), energy dispersive X- ray and energy dispersive x-ray analyzer (EDX). The pattern showed anatase and rutile phase crystalline structure. The thin films showed the surface as viewed uniform tiny spots distribution. TiO2 nanostructures were successfully synthesized using a simple hydrothermal synthesis method from TiO2 nanSubscript textoparticles. The samples were synthesized by means of the hydrothermal reaction of TiO2 nanoparticle of anatase and rutile phase. In a typical procedure, The time were varied, and cooled to room temperature, naturally. The samples showed structures of crystalline, anatase and rutile phases. They were morphology TiO2 nanorods, TiO2 nanowires and TiO2 nano shape with the diameters of about 30-300 nm. The EDX analysis of an area containing a large amount of TiO2 nanostructure reveals the existence of Na, Ti and O elements.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

2311-2313

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.N.P. Kumar, K. Keizer, A.J. Burggraaf: Mater. Sci. Lett Vol. 13 (1994), p.59

Google Scholar

[2] J.J. Wu, C.C. Yu: Phys. Chem., B Vol. 108 (2004), p.3377

Google Scholar

[3] M. Gratzel: Photoelectrochemical cells. Nature Vol. 414( 2001), p.338–344

Google Scholar

[4] J. Yu, S. Liu, H. Yu: Catal.Vol. 249 (2007), p.59

Google Scholar

[5] J. Ye, Z. Zou, H. Arakawa, M. Oshikiri, M. Shimoda, A. Matsushita, T.Shishido: Photochem. Photobiol. A. Chem.Vol. 148 (2002), p.79

Google Scholar

[6] W. Guo, Z. Lin, X. Wang, G. Song: Microelectron. Eng. Vol. 66 (2003), p.95

Google Scholar

[7] L.H. Kao, T.Chien, H.Y. Lu: Colloid and Interface Sci. Vol.316 (2007), p.160–167

Google Scholar

[8] B.B. Lakshmi, P.K. Dorhout, C.R. Martin: Chem. Mater.Vol. 9 (1997), p.857

Google Scholar

[9] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara: Langmuir Vol. 14 (1998), p.3160

DOI: 10.1021/la9713816

Google Scholar

[10] X.Y. Zhang, L.D. Zhang, W. Chen, G.W. Meng, M.J. Zheng, L.X. Zhao: Chem. Mater. Vol. 13 (2001), p.2511

Google Scholar

[11] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara: Adv. Mater.Vol. 11 (1999), p.1307

DOI: 10.1002/(sici)1521-4095(199910)11:15<1307::aid-adma1307>3.0.co;2-h

Google Scholar

[12] S.K. Pradhan, P.J. Reucroft, F. Yang, A. Dozier: Cryst. Growth Vol. 256 (2003), p.83

Google Scholar