Ultrasound-Assisted one-Pot Synthesis of Dispersable Nano-MnO2 in the Presence of Nanocellulose

Article Preview

Abstract:

One-step rapid synthesis of colloidal nano-MnO2 suspension from KMnO4 solution has been readily carried out in the presence of nanocellulose whiskers (NCW) upon a sonochemistry procedure at room temperature. NCW that plays a triple role of a reducing agent and a support, as well as of a stabilizer, has been introduced to obtain stable dispersions of MnO2 nanoparticles. UV-vis spectroscopy, XRD, and TEM were employed to characterize the products. Uniform α-MnO2 nanoparticles of dimensions 20–30 nm were obtained with good crystalinity and phase-purity by air- calcination treatment at 500 °C.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

2318-2323

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Zhou, J.H. He, J. Zhang, Z.C. He, Y.C. Hu, C.B. Zhang, H. He, Facile In-Situ Synthesis of manganese dioxide nanosheets on cellulose fibers and their application in oxidative decomposition of formaldehyde, J. Phys. Chem. C 115 (2011).

DOI: 10.1021/jp2050564

Google Scholar

[2] Y.P. Duan, H. Jing, Z. Liu, S.Q. Li, G.J. Ma. Controlled synthesis and electromagnetic performance of hollow microstructures assembled of tetragonal MnO2 nano-columns, J. Appl. Phys. 111(2012) 084109.

DOI: 10.1063/1.4705516

Google Scholar

[3] H.T. Guan, S.H. Liu, Y.B. Zhao, Y.P. Duan, Electromagnetic characteristics of nanometer manganese dioxide composite materials, J. Electron. Mater. 35 (2006) 892–896.

DOI: 10.1007/bf02692544

Google Scholar

[4] Z.M. Liu, Y.Y. Cao, Z.J. Li, G.L. Shen, R.Q. Yu, Development of a highly sensitive dna electrochemical biosensor for the determination of escherichia coli based on nano-MnO2/chitosan/ionic liquid film composites, Sensor Lett. 9 (2011) 563–569.

DOI: 10.1166/sl.2011.1513

Google Scholar

[5] S.X. Yang, H.Y. Yang, H.Y. Ma, S. Guo, F. Cao, J. Gong, Y.L. Deng. Manganese oxide nanocomposite fabricated by a simple solid-state reaction and its ultraviolet photoresponse property, Chem. Commun., 47 (2011) 2619–2621.

DOI: 10.1039/c0cc04783j

Google Scholar

[6] L. Han, J.P. Ni, L.M. Zhang, B.H. Yue, S.S. Shen, H. Zhang, W.C. Lu, Controlled synthesis of mesoporous MnO2 nanospindles, Acta Phys. Chim. Sin. 27 (2011) 743–748.

Google Scholar

[7] H.Q. Wang, G.F. Yang, Q.Y. Li, X.X. Zhong, F.P. Wang, Z.S. Li, Y.H. Li, Porous nano-MnO2: large scale synthesis via a facile quick-redox procedure and application in a supercapacitor, New J. Chem. 35 (2011) 469–475.

DOI: 10.1039/c0nj00712a

Google Scholar

[8] G. Yu, L.B. Hu, M. Vosgueritchian, H.L. Wang, X. Xie, J.R. McDonough, X. Cui, Y. Cui, Z.N. Bao, Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors, Nano Lett. 11 (2011) 2905–2911.

DOI: 10.1021/nl2013828

Google Scholar

[9] W.F. Wei , X.W. Cui , W.X. Chen, D. G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes, Chem. Soc. Rev. 40 (2011)1697–1721.

DOI: 10.1039/c0cs00127a

Google Scholar

[10] H. Adelkhani1, M. Ghaemi, M. Ruzbehani, Evaluation of the Porosity and the Nano-structure Morphology of MnO2 Prepared by Pulse Current Electrodeposition, Int. J. Electrochem. Sci., 6 (2011) 123–135.

Google Scholar

[11] Y. Yoshida, K. Kai, H. Kageyama, G. Saito, Shape deformable nanocomposite composed of manganese oxide nanosheets, J. Mater. Chem. 21 (2011) 5863–5866.

DOI: 10.1039/c1jm10594a

Google Scholar

[12] K. Kai, Y. Yoshida, H. Kageyama, G. Saito, T. Ishigaki, Y. Furukawa, J. Kawamata, Room-temperature synthesis of manganese oxide monosheets, J. Am. Chem. Soc. 130 (2008) 15938–15943.

DOI: 10.1021/ja804503f

Google Scholar

[13] L. Han, J.P. Ni, L.M. Zhang, B.H. Yue, S.S. Shen, H. Zhang, W.C. Lu, Controlled synthesis of mesoporous MnO2 nanospindles, Acta Phys. Chim. Sin. 27 (2011) 743–748.

Google Scholar

[14] V. G. Kumar, K.B. Kim, Organized and highly dispersed growth of MnO2 nano-rods by sonochemical hydrolysis of Mn(3)acetate, Ultrasonics Sonochemistry 13 (2006) 549–556.

DOI: 10.1016/j.ultsonch.2005.09.010

Google Scholar

[15] Y. Shin, I.T. Bae, B.W. Arey, G.J. Exarhos, Simple preparation and stabilization of nickel nanocrystals on cellulose nanocrystal, Materials Letters 61 (2007) 3215–3217.

DOI: 10.1016/j.matlet.2006.11.036

Google Scholar

[16] Y. Zhou, E.Y. Ding, W.D. Li, Synthesis of TiO2 nanocubes induced by cellulose nanocrystal (CNC) at low temperature, Materials Letters 61 (2007) 5050–5052.

DOI: 10.1016/j.matlet.2007.04.001

Google Scholar

[17] H. Liu, D. Wang, Z.Q. Song, S.B. Shang, Preparation of silver nanoparticles on cellulose nanocrystals and the application in electrochemical detection of DNA hybridization, Cellulose 18 (2011) 67–74.

DOI: 10.1007/s10570-010-9464-0

Google Scholar

[18] Y. Shin, I.T. Bae, B.W. Arey, G.J. Exarhos, Facile stabilization of gold-silver alloy nanoparticles on cellulose nanocrystal, J. Phys. Chem. C 112 (2008) 4844–4848.

DOI: 10.1021/jp710767w

Google Scholar

[19] S. Padalkar, J.R. Capadona, S.J. Rowan, C. Weder, R.J. Moon, L.A. Stanciu, Self-assembly and alignment of semiconductor nanoparticles on cellulose nanocrystals, J Mater Sci 46 (2011) 5672–5679.

DOI: 10.1007/s10853-011-5518-4

Google Scholar

[20] M. Kettunen, R.J. Silvennoinen, N. Houbenov, A. Nykänen, J. Ruokolainen, J. Sainio, V. Pore, M. Kemell, M. Ankerfors, T. Lindström, M. Ritala, R.H.A. Ras, O. Ikkala, Photoswitchable superabsorbency based on nanocellulose aerogels, Adv. Funct. Mater. 21 (2011).

DOI: 10.1002/adfm.201001431

Google Scholar

[21] Y. Shin, G.J. Exarhos, Template Synthesis of Nanostructured Metals using Cellulose Nanocrystal, edited by L.A. Lucia and O.J. Rojas, Chapter12 in The Nanoscience and Technology of Renewable Biomaterials, Wiley-Blackwell Publishing, Hoboken, NJ (2009).

DOI: 10.1002/9781444307474.ch12

Google Scholar

[22] K.E. Shopsowitz, H. Qi, W.Y. Hamad, M.J. MacLachlan, Free-standing mesoporous silica films with tunable chiral nematic structures, Nature 468 (2010) 422–425.

DOI: 10.1038/nature09540

Google Scholar

[23] D. Bondeson, A. Mathew, K. Oksman, Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis, Cellulose 13 (2006) 171–180.

DOI: 10.1007/s10570-006-9061-4

Google Scholar

[24] J.F. Perez-Benito, C. Arias, E. Amat, A kinetic study of the reduction of colloidal manganese dioxide by oxalic acid, J. Colloid. Interf. Sci. 177 (1996) 288–297.

DOI: 10.1006/jcis.1996.0034

Google Scholar

[25] J.X. Du, H. Wang, Chemiluminescence of nano-colloidal MnO2 with formaldehyde and its analytical application, Acta Chim. Sinica. 70 (2012) 537–543.

DOI: 10.6023/a1109031

Google Scholar

[26] P. Ragupathy, H. N. Vasan, N. Munichandraiah, Synthesis and characterization of nano-MnO2 for electrochemical supercapacitor studies, J. Electrochem. Soc. 155 (2008) A34–A40.

DOI: 10.1149/1.2800163

Google Scholar

[27] X.H. Xu, Z.Z. Zhang, F. Guo, J. Yang, X.T. Zhu, X.Y. Zhou, Q.J. Xue, Fabrication of bionic superhydrophobic manganese oxide/polystyrene nanocomposite coating, J. Bionic Eng. 9 (2012) 11–17.

DOI: 10.1016/s1672-6529(11)60092-9

Google Scholar

[28] Y. Hou, Y.W. Cheng, T. Hobson, J. Liu, Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes, Nano Lett. 10 (2010) 2727–2733.

DOI: 10.1021/nl101723g

Google Scholar

[29] N. Wang, E.Y. Ding, R.S. Cheng, Preparation and liquid crystalline properties of spherical cellulose nanocrystals, Langmuir 24 (2008) 5–8.

DOI: 10.1021/la702923w

Google Scholar