Dielectric, Piezoelectric and Ferroelectric Properties of (1-x)K0.5Na0.5NbO3–xBiGaO3 Lead-Free Ceramics

Article Preview

Abstract:

(1-X)K0.5Na0.5NbO3–xBiGaO3[(1-X)KNN-Xbg] Lead-Free Ceramics with Different Additive of Bigao3 Were Synthesized by Conventional Solid-State Sintering Technique. Dielectric, Piezoelectric and Ferroelectric Properties of (1-X)KNN-Xbg Lead-Free Ceramics Were Studied. it Is Found that the Piezoelectric Properties Was Improved due to the Additive Bigao3,The Ceramics X=0.01 near Room Temperature Exhibit Excellent Electrical Properties D33=152pC/N, TC=372 °C. these Results Indicate that Bigao3 Adjusted K0.5Na0.5NbO3-Based Ceramics Materials Are Promising Lead-Free Piezoelectric Ceramic Candidates for Practical Applications.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

2345-2348

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Jaffe B, Cook W R, Jaffe H, Piezoelectric Ceramics: Academic Press, New York, (1971).

Google Scholar

[2] Saito Y, Takao H, Tani T, Nature. 432(2004) 84–87.

Google Scholar

[3] Jiang M H, Liu X Y, Chen G H, Materials Letters. 63(2009) 1262–1265.

Google Scholar

[4] Wu J G, XiaoD X, WangY Y, Journal of Alloys and Compounds. 476(2009) 782-786.

Google Scholar

[5] Lee T, Kwoka K W, Li H L, Sensors and Actuators A. 150 (2009) 267–271.

Google Scholar

[6] Zhang S J, Xia R, Shrout T R, J Appl. Phys. 100(2006) 104108.

Google Scholar

[7] Zhang B, Li J, Wang K, J Am. Ceram. Soc. 89(2006) 1605.

Google Scholar

[8] Lin D M, Kwok K W, Lam K H, J Appl. Phys. 101(2007) 074111.

Google Scholar

[9] Chang Y, Yang Z, Wei L., J Am. Ceram. Soc. 90(2007) 1656–1658.

Google Scholar

[10] Du H, Zhou W, Luo F, J Appl. Phys. 104(2008) 044104.

Google Scholar

[11] Lei C, Ye Z G., Appl. Phys. Lett. 93(2008) 042901.

Google Scholar

[12] Zang G Z, Wang J F, Chen H C, Appl. Phys. Lett. 88(2006) 212908.

Google Scholar

[13] Dai Y, Zhang X, Zhou G., Appl. Phys. Lett. 90(2007) 262903.

Google Scholar

[14] Akdogan E K, Kerman K, Abazari M, Appl. Phys. Lett. 92(2008) 112908.

Google Scholar

[15] Cohen R E., Nature. 358(1992)136.

Google Scholar

[16] P. Baettig, C.F. Schelle, R. Lesar, U.W. Waghmare, N. Spaldin, Chem. Mater. 17 (2005) 1376.

DOI: 10.1021/cm0480418

Google Scholar

[17] R. E. Eitel, C. A. Randall, T. R. Shrout, P. W. Rehrig, W. Hackenberger, and S. E. Park, Jpn. J. Appl. Phys., 2001Part 1 40: 5999.

Google Scholar

[18] N.W. Thomas, J. Phys. Chem. Solids 51 (1990) 1419.

Google Scholar