Calculation of the Interaction Forces between Superconductor and Permanent Magnet Using Equivalent Current Loops in Zero Field Cooling

Article Preview

Abstract:

The levitation between high temperature superconductors (HTSs) and permanent magnets (PMs) has been applied to the flywheel energy storage systems and magnetic bearing systems for the last nearly twenty years. The interaction forces acting on the levitating body are calculated by the modified frozen-image method. The magnetic dipoles are equivalent to Amperian current loops. The current intensity in loops changes linearly when the PM moves. Under the zero field cooling condition, the expression of vertical force is obtained when the PM traverses vertically, and when the PM traverses horizontally, the expressions of vertical and horizontal forces are obtained. Those expressions of vertical and horizontal forces are gained by calculating the forces between current loops and using superposition theorem of vector. The calculations agree well with the previous experimental data, which means that the deductions of the expressions are reliable.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

2436-2441

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. J. Borneman, A. Tonoli, T. Ritter, C. Urban, O. Zaitsev, K. Weber and H. Reischel: IEEE Trans. Appl. Supercond. Vol. 5 (1995), p.618.

Google Scholar

[2] K. B. Ma, Y. V. Postrekhin and W. K. Chu: Rev. Sci. Instrum. Vol. 74 (2003), p.4898.

Google Scholar

[3] F. C. Moon and P. Z. Chang: Appl. Phys. Lett. Vol. 56 (1990), p.397.

Google Scholar

[4] H. Han, J. R. Hull, S. C. Han, N. H. Jeong, T. H. Sung and K. No: IEEE Trans. Appl. Supercond. Vol. 15 (2005), p.2249.

Google Scholar

[5] J. R. Hull and A. Cansiz: J. Appl. Phys. Vol. 86 (1999), p.6396.

Google Scholar

[6] X. J. Zheng and Y. Yang: IEEE Trans. Appl. Supercond. Vol. 17 (2007), p.3862.

Google Scholar

[7] Y. Yang and X. J. Zheng: Supercond. Sci. Technol. Vol. 21 (2008), p.015021.

Google Scholar

[8] E. H. Brandt: Appl. Phys. Lett. Vol. 53 (1988), p.1554; Am. J. Phys. Vol. 58 (1990), p.43.

Google Scholar

[9] A. Sanchez and C. Navau: Physica C Vol. 268 (1996), p.46; Physica C Vol. 364-365 (2001), p.360.

Google Scholar

[10] F. C. Moon: J. Appl. Electromagn. Mat. Vol. 1 (1990), p.29.

Google Scholar

[11] T. Sugiura, H. Hashizum and K. Miya: Int. J. Appl. Electromagn. Mater. Vol. 2 (1991), p.183.

Google Scholar

[12] M. Uesaka, Y. Yoshida, N. Takeda and K. Miya: Int. J. Appl. Electromagn. Mater. Vol. 4 (1993), p.13.

Google Scholar

[13] T. Akamatsu, H. Ueda and A. Ishiyama: IEEE Trans. Appl. Supercond. Vol. 13 (2003), p.2161.

Google Scholar

[14] C. P. Bean: Phys. Rev. Lett. Vol. 8 (1962), p.250; Rev. Mod. Phys. Vol. 36 (1964), p.31.

Google Scholar

[15] A. A. Kordyuk: J. Appl. Phys. Vol. 83 (1998), p.610.

Google Scholar

[16] Y. Yang and X. J. Zheng: J. Appl. Phys. Vol. 101 (2007), p.113922.

Google Scholar

[17] F. C. Moon: Magnetosolid Mechanics (1984) p.421.

Google Scholar