Theoretical Study on Au-Doped Ge Semiconductor Clusters

Article Preview

Abstract:

Structure, electronic property, aromaticity and vibrational frequency of medium-sized Au-doped germanium clusters were systematically explored using the density-functional theory (DFT) in conjunction with the LanL2DZ basis set. Our results show that the endohedrally Au-doped cagelike structures are energetically preferred. The p- and d-states in endohedral Au atom mainly contribute to the chemical bonding at around −6.5 and −10.6 eV for the AuGe10 and AuGe12 clusters. Moreover, the cage aromaticity appears to be an important determination of the electronic stability of the two clusters, reflected by negative nucleus-independent chemical shifts (NICS) values. The theoretical work will be useful and helpful for the understanding in the further application, i.e., cluster-assembled optoelectronic nanomaterials.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

2537-2540

Citation:

Online since:

January 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. -J. Zhao and Y. -X. Wang: J. Mol. Struct.: THEOCHEM Vol. 901 (2009), p.18.

Google Scholar

[2] W. -J. Zhao and Y. -X. Wang: Chem. Phys. Vol. 352 (2008), p.291.

Google Scholar

[3] V. Kumar and Y. Kawazoe: Phys. Rev. Lett. Vol. 88 (2002), p.235504.

Google Scholar

[4] D. Bandyopadhyay and P. Sen: J. Phys. Chem. A Vol. 114 (2010), p.1835.

Google Scholar

[5] L. -Z. Zhao, W. -C. Lu, W. Qin, et al.: Chem. Phys. Lett. Vol. 455 (2008), p.225.

Google Scholar

[6] T.V. Hoof and M. Hou: Phys. Rev. B Vol. 72 (2005), p.115434.

Google Scholar

[7] E.E. Zhurkin and M. Hou: J. Phys.: Condens. Matter Vol. 12 (2000), p.6735.

Google Scholar

[8] X. -J. Li and K. -H. Su: Theor. Chem. Acc. Vol. 124 (2009), p.345.

Google Scholar

[9] J.U. Reveles, P. Sen, K. Pradhan, et al.: J. Phys. Chem. C Vol. 114 ( 2010), p.10739.

Google Scholar

[10] K. Meier, R. Cardoso-Gil, et al.: Z. Anorg. Allg. Chem. Vol. 636 (2010), p.1466.

Google Scholar

[11] J. Lu, S. Nagase: Chem. Phys. Lett. Vol. 372 (2003), p.394.

Google Scholar

[12] V. Kumar, Y. Kawazoe: Appl. Phys. Lett. Vol. 80 (2002), p.859.

Google Scholar

[13] V. Kumar, A.K. Singh, Y. Kawazoe: Nano Lett. Vol. 4 (2004), p.677.

Google Scholar

[14] S. Furuse, K. Koyasu, J. Atobe, A. Nakajima: J. Chem. Phys. Vol. 129 (2008), p.064311.

Google Scholar

[15] X. Zhang, G. Li, Z. Gao: Rapid Commun. Mass Spectrom. Vol. 15 (2001), p.1573.

Google Scholar

[16] X. Li and L. -S. Wang: Phys. Rev. B Vol. 65 (2002), p.153404.

Google Scholar

[17] C. Lee, W. Yang, and R.G. Parr: Phys. Rev. B Vol. 37 (1988), p.785.

Google Scholar

[18] A.D. Becke: Phys. Rev. A Vol. 38 (1988), p.3098.

Google Scholar

[19] M.J. Frisch, et al.: Gaussian 09, Revision A. 02, Gaussian, Inc., Wallingford CT, (2009).

Google Scholar

[20] P.J. Hay and W.R. Wadt: J. Chem. Phys. Vol. 82 (1985), p.270.

Google Scholar

[21] W.R. Wadt and P.J. Hay: J. Chem. Phys. Vol. 82 (1985), p.284.

Google Scholar

[22] P.J. Hay and W.R. Wadt: J. Chem. Phys. Vol. 82 (1985), p.299.

Google Scholar

[23] X. -J Li and H. -J Ren: submitted to Chem. Phys. Lett. (2012).

Google Scholar

[24] N.M. O'Boyle, A.L. Tenderholt, K.M. Langner: J. Comp. Chem. Vol. 29 (2008), p.839.

Google Scholar

[25] Z. Chen, C.S. Wannere, C. Corminboeuf, P.R. Schleyer: Chem. Rev. Vol. 105 (2005), p.3842.

Google Scholar

[26] A.I. Boldyrev, L. -S. Wang: Chem. Rev. Vol. 105 (2005), p.3716.

Google Scholar