First-Principles Study on Energy Property and Stability of Y3Al5O12 Crystal

Article Preview

Abstract:

The geometrical structure of Y3Al5O12 (YAG) crystal was optimized by using first-principles calculation scheme, i.e. generalized gradient approximation (GGA) with the PW91 exchange correlation potential and “on the fly” pseudo-potential (OTFPP). The obtained lattice parameters are in good accordance with experimental results reported in the literature. This confirms the validity of the present GGA-OTFPP scheme. The total energy, populations, and contour maps of total charge density of YAG system were calculated with the same scheme. The derived formation energy (-2.396eV) indicate the good stability of the structure. The obtained Mulliken charge populations of atoms, overlap populations, as well as contour maps of total charge density congruously show that YAG crystal is a mixed bond material with stronger ion bond and weaker covalence bond.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

2531-2536

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Koechner, Solid-State Laser Engineering (6th edition), Berlin, Springer Series in Optical Sciences, (2006).

Google Scholar

[2] X.Q. Feng, J. Inorg. Mater. 25 (2010), p.785.

Google Scholar

[3] T.I. Mah, T.A. Parthasarathy, H.D. Lee, J. Ceram. Process. Res. 5 (2004), p.369.

Google Scholar

[4] D. Solodovnikov, M. H. Weber, K.G. Lynn, Appl. Phys. Lett. 93 (2008), p.104102.

Google Scholar

[5] X.B. Yang, H.J. Li, Q.Y. Bi, et al., J. Cryst. Growth 311 (2009), p.3692.

Google Scholar

[6] A.K. Pradhan, K. Zhang, G.B. Loutts, Mater. Res. Bull. 39 (2004), p. 129l.

Google Scholar

[7] D.O. Lemeshev, E.S. Lukin, N.A. Makarov, N.A. Popova, Glass and Ceram. 65 (2008), p.128.

Google Scholar

[8] J. Sanghera, S. Bayya, G. Villalobos, et al., Opt. Mater. 33 (2011), p.511.

Google Scholar

[9] J.K.R. Weber, B. Cho, A.D. Hixson, et al., J. Eur. Ceram. Soc. 19 (1999), p.2543.

Google Scholar

[10] M. Shojaie-Bahaabad, E. Taheri-Nassaj, R. Naghizadeh, Ceram. Int. 34 (2008), p.893.

Google Scholar

[11] A. Sahraneshin, S. Takami, K. Minami, Prog. Cryst. Growth and Charact. Mater. 58 (2012), p.43.

Google Scholar

[12] C.W. Won, H.H. Nersisyan, H.I. Won, et al., J. Alloys Compd. 509 (2011), p.2621.

Google Scholar

[13] Y.N. Xu, W.Y. Ching, Phys. Rev. B 59 (1999), p.10530.

Google Scholar

[14] Y.N. Xu, W.Y. Ching, Phys. Rev. B 59 (1999), p.12815.

Google Scholar

[15] G. Pari, A. Mookerjee, A.K. Bhattacharya, Phys. B 365 (2005), p.163.

Google Scholar

[16] M.G. Shelyapina, V.S. Kasperovich, P. Wolfers, J. Phys. Chem. Solids 67 (2006), p.720.

Google Scholar

[17] H.Z. Yao, L.Z. Ouyang, W.Y. Ching, J. Am. Ceram. Soc. 90 (2007), p.3194.

Google Scholar

[18] A.B. Munoz-Garcia, E. Anglada, L. Seijo, Int. J. Quantum Chem. 109 (2009), p. (1991).

Google Scholar

[19] J. Chen, T.C. Lu, Y. Xu, et al., J. Phys. Condens. Matter. 20 (2008), p.325212.

Google Scholar

[20] A.B. Munoz-Garcia, E. Artacho, L. Seijo, Phys. Rev. B 80 (2009) 014105.

Google Scholar

[21] A.B. Munoz-Garcia, J.L. Pascual, B. Zoila, Phys. Rev. B 82 (2010) 064114.

Google Scholar

[22] A.B. Munoz-Garcia, L. Seijo, Phys. Rev. B 82 (2010) 184118.

Google Scholar

[23] A.B. Munoz-Garcia, L. Seijo, J. Phys. Chem. A 115 (2011), p.815.

Google Scholar

[24] Q.Q. Wang, Z.S. Zhao, L.F. Xu, et al., J. Phys. Chem. C 115 (2011), p.19910.

Google Scholar

[25] J. Chang, P. Lian, D.Q. Wei, et al., Phys. Rev. Lett. 105 (2010) 188302.

Google Scholar

[26] Y. Kawazoe, Bull. Mater. Sci. 22 (1999), p.901.

Google Scholar

[27] F. Euler, J. A. Bruce, Acta Crystallogr. 19 (1965), p.971.

Google Scholar

[28] M.D. Segall, P.J.D. Lindan, M.J. Probert, et al., J. Phys. Condens. Matter 14 (2002), p.2717.

Google Scholar

[29] J.P. Perdew, Y. Wang, Phys. Rev. B 45 (1992), p.13244.

Google Scholar

[30] S.J. Clark, M.D. Segall, C.J. Pickard, et al., Z. kristallogr. 220 (2005), p.567.

Google Scholar

[31] J. Carda, M.A. Tena, G. Monros, et al., Cryst. Res. Techno. 29 (1994), p.387.

Google Scholar

[32] A. Nakatsuka, A. Yoshiasa, T. Yamanaka, Acta Crystallogr., Sect. B 55 (1999), p.266.

Google Scholar

[33] E. Prince, Acta Crystallogr. 10 (1957), p.787.

Google Scholar

[34] L. Dobrzycki, E. Bulska, D.A. Pawlak, et al., Inorg. Chem. 43 (2004), p.7656.

Google Scholar

[35] M. Sanati, G.L.W. Hart, A. Zunger, Phys. Rev. B 68 (2003) 155210.

Google Scholar

[36] A. Grechnev, R. Ahuja, O. Eriksson, J. Phys. Condens. Matter 15 (2003), p.7751.

Google Scholar

[37] R. Dronskowski, P.E. Blochl, J. Phys. Chem. 97 (1993), p.8617.

Google Scholar

[38] W.V. Glassey, R. Hoffmann, J. Chem. Phys. 113 (2000), p.1698.

Google Scholar