First-Principle Study of Structural and Electronic Properties of Ti-Doped SnO2

Article Preview

Abstract:

The structural and electronic properties of Ti-doped SnO2 with 6.25 at.% are investigated with the first principle calculations based on the density functional theory within the generalized gradient approximation. The calculation results indicate that the crystal structure of Sn0.9375Ti0.0625O2 possesses a smaller volume; the bond length of Ti-O is shorter than that of Sn-O; the relative angle θ change value of Sn-O-Sn→Ti-O-Ti is about 1.07%. Ti-O bond possesses more covalent ingredient and stronger bond energy than Sn-O bond. After the replacement of one Ti atom, O atom bonded with Ti atom possessed fewer electrons, the ratio of charges possessed by Ti atom and O atom dose not agree with the stoichiometry of compound, create more holes at the top of VB of Sn0.9375Ti0.0625O2, and lead to the increase of the conductivity.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

2545-2549

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Weon-Pil Tai: Sol. Energ. Mat. Sol. C. 76(2003) 65.

Google Scholar

[2] A. Sharma, M. Tomar, V. Gupta. Sensor Actuat. B-Chem.156(2011) 743.

Google Scholar

[3] Jingkai Yang, Wenchang Liu, Lizhong Dong, Yuanxun Li, Chuan Li, Hongli Zhao. Appl. Surf. Sci. 257(2011) 10499.

Google Scholar

[4] A. F. Khan, M. Mehmood, M. Aslam, M. Ashraf. Appl. Surf. Sci. 256(2010) 2252.

Google Scholar

[5] Jin Huang, Aixia Lu, Bin Zhao, Qing Wan. Appl. Phys. Lett. 91(2007) 073102.

Google Scholar

[6] E. Elangovan, S.A. Shivashankar, K. Ramamurthi. J. Cryst. Growth. 276(2005) 215.

Google Scholar

[7] A. Tricoli, M. Righettoni, S.E. Pratsinis. Nanotechnology. 20(2009) 315502.

Google Scholar

[8] M. Radecka, J. Przewoznik, K. Zakrzewska. Thin Solid Films. 391(2001) 247.

Google Scholar

[9] J.S. Chen, H.L. Li, J.L. Huang. Appl. Surf. Sci. 187(2002) 305.

Google Scholar

[10] X.M. Liu, S.L. Wu, Paul K. Chu, J. Zheng, S.L. Li. Mat. Sci. Eng. A-Struct. 426(2006) 274.

Google Scholar

[11] J.Oviedo, M. J. Gillan. Surf. Sci. 490(2001) 221.

Google Scholar

[12] M. Viitala, O. Cramariuc, T. T. Rantala, V. Golovanov. Surf. Sci. 602 (2008) 3038.

Google Scholar

[13] Wen Zeng, Tianmo Liu, Zhongchang Wang. Physica E. 43(2010) 633.

Google Scholar

[14] K.R. Hahn, A. Tricoli, G. Santarossa, A. Vargas, A. Baiker. Surf. Sci. 605(2011) 1476.

Google Scholar

[15] Wei Lin, Yong-Fan Zhang, Yi Li, Kai-Ning Ding, Jun-Qian Li, Yi-Jun Xu. J. Chem. Phys. 124(2006) 1.

Google Scholar

[16] T.H. Fischer, J. Almlöf. J. Chem. Phys. 96(1992) 9768.

Google Scholar

[17] J.P. Perdew, Y. Wang. Phys. Rev. B. 45(1992) 13244.

Google Scholar

[18] Chun-Mei Liu, Xiang-Rong Chen, Guang-Fu Ji. Comp. Mater. Sci. 50(2011) 1571.

Google Scholar

[19] Qi-Jun Liu, Zheng-Tang Liu, Li-Ping Feng. Comp. Mater. Sci. 47(2010) 1016.

Google Scholar

[20] R.M. Hazen, L.W. Finger. J. Phys. Chem. Solids. 42(1981) 143.

Google Scholar

[21] B. Thangaraju. Thin Solid Films. 402(2002) 71.

Google Scholar

[22] M. Radecka, J. Przewoźnik, K. Zakrzewska. Thin Solid Films. 391(2001) 247.

Google Scholar

[23] M.D. Segall, R. Shah, C.J. Pickard, M.C. Payne. Phys. Rev. B. 54(1996) 16317.

Google Scholar

[24] V.E. Henrich, P.A. Cox. The surface science of Metal Oxides[M], Cambridge: Cambridge University Press, 1994: 43.

Google Scholar