Supercapacitive Properties of Hydrothermally Synthesized γ-MnOOH Nanowires

Article Preview

Abstract:

γ-MnOOH nanowires have been synthesized via a simple hydrothermal process without any template at relatively low temperature. The as-obtained sample was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical properties of the γ-MnOOH nanowires were investigated by cyclic voltammetry and galvanostatic charge-discharge methods. And a high specific capacitance calculated from the galvanostatic discharge curve was 191 F•g-1 at the current density of 0.1 A•g-1, which remain a good specific capacitance of 143 F•g-1 at the current density of 1.0 A•g-1. The electrochemical analysis results demonstrate that γ-MnOOH nanowires should be a good candidate as electrode material for supercapacitor.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

2638-2642

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. F. Chen, X. D. Zhang, H. W. Liang, M. Kong, Q. F. Guan, P. Chen, Z.Y. Wu and S.H. Yu: ACS Nano Vol. 6 (2012), p.7092.

Google Scholar

[2] H. Wang, L. Zhang, X. Tan, C.M.B. Holt, B. Zahiri, B.C. Olsenand D. Mitlin: The Journal of Physical Chemistry C Vol. 115 (2011), p.17599.

Google Scholar

[3] Y. Li, X. Zhao, Q. Xu, Q. Zhangand D. Chen: Langmuir Vol. 6 27 (2011), p.6458.

Google Scholar

[4] J.W. Long, K.E. Swider, C.I. Merzbacherand D.R. Rolison: Langmuir Vol. 6 15 (1999), p.780.

Google Scholar

[5] I.C. Stefan, Y. Mo, M.R. Antonioand D.A. Scherson: The Journal of Physical Chemistry B Vol. 106 (2002), p.12373.

Google Scholar

[6] Y.Q. Zhang, X.H. Xia, J.P. Tu, Y.J. Mai, S.J. Shi, X.L. Wang and C.D. Gu: Journal of Power Sources Vol. 199 (2012), p.413.

Google Scholar

[7] A. A. MalekBarmi, M. Aghazadeh, B. Arhami, H.M. Shiri, A.A. Fazl and E. Jangju: Chemical Physics Letters Vol. 541 (2012), p.65.

DOI: 10.1016/j.cplett.2012.05.038

Google Scholar

[8] D.L. Fang, B.C. Wu, A.Q. Mao, Y. Yanand C.H. Zheng: Journal of Alloys and Compounds Vol. 507 (2010), p.526.

Google Scholar

[9] C.C. Hu, C.Y. Hung, K.H. Changand Y.L. Yang: Journal of Power Sources Vol. 196 (2011), p.847.

Google Scholar

[10] D.L. Fang, B.C. Wu, A.Q. Mao, Y. Yanand C.H. Zheng: Journal of Alloys and Compounds Vol. 507 (2010), p.526.

Google Scholar

[11] P.S. Nicoand R.J. Zasoski: Environmental Science & Technology Vol. 35 (2001), p.3338.

Google Scholar

[12] Q. Li, Z.L. Wang, G.R. Li, R. Guo, L.X. Ding and Y.X. Tong: Nano Letters Vol. 12 (2012), p.3803.

Google Scholar

[13] M. Xu, L. Kong, W. Zhouand H. Li: The Journal of Physical Chemistry C Vol. 111 (2007) , p.19141.

Google Scholar

[14] P. Ragupathy, D.H. Park, G. Campet, H.N. Vasan, S.J. Hwang, J.H. Choy and N. Munichandraiah: The Journal of Physical Chemistry C Vol. 113 (2009), p.6303.

Google Scholar