Synthesis of LiMn0.7Fe0.3PO4/C Composite Cathode Materials for Lithium-Ion Batteries

Article Preview

Abstract:

LiMn0.7Fe0.3PO4/C composite cathode material was prepared by using a solid state reaction method. The effects of annealing temperatures on the structural and electrochemical performance of LiMn0.7Fe0.3PO4/C were investigated by using X-ray diffraction (XRD), scanning electron microscope (SEM), charge–discharge tests and electrochemical impedance spectra (EIS). The results showed that all of samples have pure ordered olivine phase with orthorhombic Pnma structure. The electrochemical performance of LiMn0.7Fe0.3PO4/C can be improved remarkably with increasing temperature from 550oC to 650 oC due to increased crystallization, cation-order and decreased charge transfer resistance. However, increase temperature to 700 oC leads to bigger crystal particle size and decreased cation-order, thus higher resistance and deteriorated electrochemical properties. The sample prepared at optimized temperature of 650 oC presents a remarkable improved electrochemical performance. It delivers an initial capacity of 125.1 mAhg-1 at 0.2C, 95 mAhg-1 at 5C, and a capacity retention of 98.0% after 30 cycles.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

2617-2620

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Wang, P. He and H. Zhou: Energy Environ. Sci. Vol. 4 (2011), p.805.

Google Scholar

[2] Y. Wang, G. Cao: Adv. Mater. Vol. 20 (2008), p.2251.

Google Scholar

[3] D. Liu, G. Cao: Energy Environ. Sci. Vol. 3 (2010), p.1218.

Google Scholar

[4] A. Yamada, M. Hosoya, S. -Ch. Chung, Y. Kudo, K. Hinokuma, K. -Y. Liu and Y. Nishi: J. Power Sources Vol. 119–121 (2003), p.232.

DOI: 10.1016/s0378-7753(03)00239-8

Google Scholar

[5] D. -H. Seo, H. Gwon, S. -W. Kim, J. Kim and K. Kang: Chem. Mater. Vol. 22 (2010), p.518.

Google Scholar

[6] J. Kim, D. -H. Seo, S. -W. Kim, Y. -U. Park and K. Kang: Chem. Commun. Vol. 46 (2010), p.1305.

Google Scholar

[7] T. Nedoseykina, M. G. Kim, S. -A. Park, H. -S. Kim, J. Cho and Y. Lee: Electrochim. Acta Vol. 55 (2010), p.8876.

Google Scholar

[8] S. -M. Oh, S. -W. Oh, C. -S. Yoon, B. Scrosati, K. Amine and Y. K. Sun: Adv. Funct. Mater. Vol. 20 (2010), p.3260.

Google Scholar

[9] D. Wang, H. Buqa, M. Crouzet, G. Deghenghi, T. Drezen, I. Exnar, N.H. Kwon, J. H. Miners, L. Poletto and M. Gratzel: J. Power Sources Vol. 189 (2009), p.624.

DOI: 10.1016/j.jpowsour.2008.09.077

Google Scholar

[10] J. Hong, F. Wang, X. Wang and J. Graetz: J. Power Sources Vol. 196 (2011), p.3659.

Google Scholar

[11] S. -M. Oh, H. -G. Jung, Ch. S. Yoon, S. -T. Myung, Z. Chen, K. Amine and Y. -K. Sun: J. Power Sources Vol. 196 (2011), p.6924.

Google Scholar

[12] B. Zhang, X. Wang, Hong Li and X. Huang: J. Power Sources Vol. 196 (2011), p.6992.

Google Scholar

[13] H. Yi, C. Hu, H. Fang, B. Yang, Y. Yao, W. Ma and Y. Dai: Electrochim. Acta Vol. 56 (2011), p.4052.

Google Scholar

[14] C. Hu, H. Yi, H. Fang, B. Yang, Y. Yao, W. Ma and Y. Dai: Electrochem. Commun. Vol. 12 (2010), p.1784.

Google Scholar

[15] J. -W. Lee, M. -S. Park, B. Anass, J. -H. Park, M. -S. Park and S. -G. Doo: Electrochim. Acta Vol. 55 (2010), p.4162.

Google Scholar

[16] L. Damen, F. D. Giorgio, S. Monaco, F. Veronesi and M. Mastragostino: J. Power Souces, (Accepted).

Google Scholar

[17] M. Jo, H. Ch. Yoo, Y. S. Jung and J. Cho: J. Power Souces Vol. 216 (2012), p.162.

Google Scholar

[18] X. Cao, J. Zhang, L. Yan, Q. Song and X. Li: Ch. J. Mater. Res. Vol. 23 (2009), p.369.

Google Scholar