A Genetic Threading Method with Combined Structure- and Sequence-Based Information

Article Preview

Abstract:

A threading program based on genetic algorithm, is proposed for the protein fold recognition problem. Proper algorithm is designed in which genetic operators can be effectively implemented, and a more realistic energy model is adopted in this work. The performance of the genetic threading method is tested on a standard fold recognition benchmark, and the results show that the genetic threading method has good alignment accuracy and fold recognition ability. The analysis of the results demonstrates the rationality of our energy model.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

3930-3935

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.J. Dodson: Nature, vol. 450 (2007), p.176.

Google Scholar

[2] J.U. Bowie, R. Luthy, D. Eisenberg: Science, vol. 253 (1991), p.164.

Google Scholar

[3] O. Teodorescu, T. Galor, J. Pillardy, R. Elber: Proteins, vol. 54 (2004), p.41.

Google Scholar

[4] H. Zhou, Y. Zhou: Proteins, vol. 58 (2005), p.321.

Google Scholar

[5] D.T. Jones, W.R. Taylor, J.M. Thornton: Nature, vol. 358 (1992), p.86.

Google Scholar

[6] A. Godzik, A. Kolinski, J. Skolnick: J. Mol. Biol., vol. 227 (1992), p.227.

Google Scholar

[7] S.H. Bryant: Proteins, vol. 26 (1996), p.172.

Google Scholar

[8] R. Thiele, R. Zimmer, T. Lengauer: J. Mol. Biol., vol. 290 (1999), p.757.

Google Scholar

[9] R.H. Latrop: Protein Eng., vol. 7 (1994), p.1059.

Google Scholar

[10] Y. Xu, D. Xu: Proteins, vol. 40 (2000), p.343.

Google Scholar

[11] J. Xu, M. Li, D. Kim, Y. Xu: J. Bioinform. Comput. Biol., vol. 1 (2003), p.95.

Google Scholar

[12] P.Y. Calland: Protein Eng., vol. 16 (2003), p.79.

Google Scholar

[13] H. Li, C. Li, C. Gui, X. Luo, K. Chen, J. Shen, X. Wang, H. Jiang: Bioorgan. Med. Chem. Lett., vol. 14 (2004), p.4671.

Google Scholar

[14] M. Gurkiewicz, A. Korngreen: PLOS Comput. Biol., vol. 3 (2007), p.1633.

Google Scholar

[15] D.A. Pearlman, B.G. Rao, P. Charifson: Proteins, vol. 71 (2008), p.1519.

Google Scholar

[16] D.E. Goldberg: Genetic algorithms in search, optimization and machine learning (Addison Wesley, New York 1989).

Google Scholar

[17] B. Park, M. Levitt: J. Mol. Biol., vol. 258 (1996), p.367.

Google Scholar

[18] S. J. Wodak, J. Jain: Proc. Nati. Acad. Sci. USA, vol. 77 (1980), p.1736.

Google Scholar

[19] H. Zhou, Y. Zhou: Proteins, vol. 55 (2004), p.1005.

Google Scholar

[20] A. Liwo, M. R. Pincus, R. J. Wawak, S. Rackovsky, H. A. Scheraga: Protein Sci., vol. 2 (1993), p.1715.

Google Scholar

[21] J. Gu, H. Li, X. Wang, H. Jiang: Biochem. Biophys. Res. Commun., vol. 379 (2009), p.610.

Google Scholar

[22] D. Frishman, P. Argos: Proteins, vol. 27 (1997), p.329.

Google Scholar

[23] D. Fischer, A. Elofsson, D. Rice, D. Eisenberg: Pac. Symp. Biocomput. (1996), p.300.

Google Scholar

[24] I.N. Shindyalov, P.E. Bourne: Protein Eng., vol. 11 (1998), p.739.

Google Scholar