Synthesis of Substituted Phosphotungstic Acids and their Catalytic Performance on Cationic Polymerization of β-Pinene

Article Preview

Abstract:

Substituted phosphotungstic acids containing manganese, chromium, molybdenum and vanadium were prepared, and their catalytic performance on cationic polymerization of β-pinene was also investigated. The experimental results show that the substituted phosphotungstic acids are mono-substituted and keep Keggin structure. The substituted phosphotungstic acids containing Mn or Cr exhibit similar catalytic performance as phosphotungstic acid, instead show bad properties if containing Mo or V. The yield of polymer is up to 44.3 %, and the average number molecular weight is about 1200, and molecular weight distribution index is 1.4.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

616-619

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Liggio, S.M. Li, J.R. Brook and C. Mihele: Geophys. Res. Lett. Vol.34 (2007), p.L05814

Google Scholar

[2] B.J. Mehta and N.Krishnaswamy: J. Appl. Polym. Sci. Vol.20(1976), p.2229

Google Scholar

[3] T. Higashimura, J. Lu, M. Kamigaito, M. Sawamoto and Y.X. Deng: Macromol. Chem. Vol.193(1992), p.2311

Google Scholar

[4] J.D. Burrington, J.R. Johnson and J.K. Pudelski: Top. Catal. Vol. 23, Nos. 1-4, (2003), p.175

Google Scholar

[5] E.R. Ruckel, H.G. Arlt and R.T. Wojcik: Adhesion Science and Technology (Plenum Press, New York 1975)

Google Scholar

[6] J.P. Kennedy and E. Marechal: Carbocationic Polymerization (J.Wiley and Sons, Inc., New York 1982)

Google Scholar

[7] A.B. Radbil', B.A. Zolin, Yu. A. Shkapova and B.A. Radbil': Russ. J. Appl. Chem.Vol.75(2002), p.310

DOI: 10.1023/a:1016185024931

Google Scholar

[8] T. Higashimura, J. Lu, M. Kamigaito, M. Sawamoto and Y.X. Deng: Macromol. Chem.Vol.194(1993), p.3441

Google Scholar

[9] G. Gündüz, R. Dimitrova, S. Yilmaz and L. Dimitrov: Appl. Catal. A: Gen.Vol.282 (2005), p.61

Google Scholar

[10] M. T. Pope: Heteropoly and Isopoly Oxometalates (Springer-Verlag, Berlin 1983)

Google Scholar

[11] M. T.Pope and A.Müller: Angew. Chem. Int. Ed. Engl. Vol.30 (1991), p.34

Google Scholar

[12] M. T.Pope and A.Müller: Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity (Kluwer Academic Publishers, Dordrecht 1994)

Google Scholar

[13] C. L.Hill: Chem. Rev. Vol.98 (1998), p.1

Google Scholar

[14] A.Haimov, H.Cohen and R. J. Neumann: Am. Chem. Soc. Vol.126 (2004), p.11762

Google Scholar

[15] Y.Shen, J.Peng, H. Zhang, X.Yu, and Alan M. Bond: Inorg. Chem. Vol.51 (2012), p.5146

Google Scholar

[16] J. T.Rhule, C. L.Hill and D. A. Judd: Chem. Rev. Vol.98 (1998), p.327

Google Scholar

[17] T. Yamase: Chem. Rev. Vol.98 (1998), p.307

Google Scholar

[18] E. Rezaei-Seresht, F.M. Zonoz, M. Estiri and R.Tayebee: Ind. Eng. Chem. Res. Vol.50 (2011), p.1837

DOI: 10.1021/ie101641t

Google Scholar

[19] D. Rath, S. Rana, K. M. Parida: Ind. Eng. Chem. Res. Vol.49(2010), p.8942

Google Scholar

[20] H. Zhu, Z. Liu, T. Zhang, W.Zeng, X. An, F. Lei: React Kinet. Mech. Cat. Vol.99(2010), p.463

Google Scholar

[21] H. Zhu, Z. Liu, X.An and F. Lei: React. Kinet. Mech. Cat. Vol.100(2010), p.355

Google Scholar

[22] Z. Liu, T. Zhang, W. Zeng, H. Zhu and X. An: React. Kinet. Mech. Cat. Vol.100 (2011), p.355

Google Scholar

[23] Z. Liu, H. Zhu, Z.Wei, T. Zhang, X. An and F.Lei: CIESC journal, Vol.62 (2011), p.962

Google Scholar

[24] Z. Liu, W.Zeng, T.Zhang, S. Wang, H. Zhu and F.Lei: Advanced Materials Research, Vols.550-553 (2012), p.296

Google Scholar

[25] M. Misono: Catal. Rev. Sci. Eng. Vol.29 (1987), p.269

Google Scholar