Synthesis of Three-Dimensionally Ordered Macroporous Co/SiO2 Catalysts by Sol-Gel Method

Article Preview

Abstract:

A preparation of novel cobalt-based catalyst on three-dimensionally ordered macroporous (3DOM) silica supporter using poly (methyl methacrylate) monolith as a template has been studied. Monodispersed PMMA colloids were synthesized via an emulsion polymerization, resulting in PMMA spheres with the diameter of 390-400 nm. Two processes were employed for the 3DOM Co/SiO2 catalyst fabrications, a single-stage sol-gel synthesis (SG) and incipient wetness impregnation method (IM) on synthesized 3DOM SiO2. Both catalysts were characterized using X-ray Diffraction (XRD), X-ray Absorption Spectroscopy (XAS), Scanning Electron Microscope (SEM) and specific surface area analysis. The XRD and XAS results showed that the doped Co in the 3DOM Co/SiO2 (SG) were the mix phase of Co(NO3)2 and Co3O4 , while, only Co3O4 was found in the 3DOM Co/SiO2(IM). The SEM micrographs revealed that both catalysts feature periodic macroporous structure with mean pore diameter of 300-350 nm. Specific surface area of the 3DOM Co/SiO2 (IM) and the 3DOM Co/SiO2 (SG) catalysts are 195 m2/g and 286 m2/g, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

620-623

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.A. Kritzinger: Catal. Today Vol. 71 (2002), p.307.

Google Scholar

[2] J.B. Li, Z.Q. Jiang, K. Qian and W.X. Huang: Chin. J. Chem. Phys. Vol. 25 (2012), p.103.

Google Scholar

[3] L. Yu, X. Zhang, Z. Du, D. Wang, S. Wang and S. Wu: J. Nat. Gas Chem. Vol. 16 (2007), p.46.

Google Scholar

[4] M. Reinikainen, J. Kivaho, M. Kroger, M. Niemela and S. Jaaskelainen: J. Mol. Catal. A-Chem. Vol. 118 (1997), p.137.

Google Scholar

[5] P. Kluson and L. Cerveny: Appl. Catal. A Vol. 128 (1995), p.13.

Google Scholar

[6] S. Esposito, M. Turco, G. Ramis, G. Bagnasco, P. Pernice, C. Pagliuca, M. Bevilacqua and A. Aronne: J. Solid State Chem. Vol. 180 (2007), p.3341.

DOI: 10.1016/j.jssc.2007.09.032

Google Scholar

[7] A.M. Saib, A. Borgna, J. van de Loosdrecht, P.J. van Berge, J.W. Geus and J.W. Niemantsver-driet: J. Catal. Vol. 239 (2006), p.326.

Google Scholar

[8] S. Eriksson, U. Nylen, S. Rojas and M. Boutonnet: Appl. Catal. A Vol. 265 (2004), p.207.

Google Scholar

[9] J.R.A. Sietsma, J.P. den Breejen, P.E. de Jongh, A.J. van Dillen, J.H. Bitter and K.P. de Jong: Natural. Gas Conv. VIII. (2007), p.55.

DOI: 10.1016/s0167-2991(07)80108-x

Google Scholar

[10] K. Jalama, N.J. Coville, H. Xiong, D. Hildebrandt, D. Glasser, S. Taylor, A. Carley, J.A. Anderson and G.J. Hutchings: Appl. Catal. A Vol. 395 (2011), p.1.

Google Scholar

[11] W. Ma, G. Jacobs, D. E. Sparks, M. K. Gnanamani, V. R. R. Pendyala, C. H. Yen, J. L. S. Klettlinger, T. M. Tomsik and B. H. Davis: Fuel Vol. 90 (2011), p.756.

DOI: 10.1016/j.fuel.2010.10.029

Google Scholar

[12] A. Stein and R.C. Schroden: Curr. Opin. Solid St. M. Vol. 5 (2001), p.553.

Google Scholar

[13] B.T. Holland, C.F. Blanford, T. Do and A. Stein: Chem. Mater. Vol. 11 (1999), p.795. [14] K. Sasahara, T. Hyodo, Y. Shimizu and M. Egashira: J. Eur. Ceram. Soc. Vol. 24 (2004), p.1961.

Google Scholar

[15] B.T. Holland, C.F. Blanfoed and A. Stein: Science. Vol. 281 (1998), p.538.

Google Scholar

[16] Q.Z. Wu, Q. Yin, J.F. Liao, J.H. Deng and Y.G. Li: Chin. J. Chem. Vol. 23 (2005), p.689.

Google Scholar

[17] G. Ortega-Zarzosa, C. Araujo-Andrade, M.E. Compean-Jasso and J.R. Martinez: J. Sol-Gel Sci. Technol. Vol. 24 (2002), p.23

DOI: 10.1023/a:1015105414916

Google Scholar