Catalytic Voltammetric Determination of Vanadium in Crude Oil at Carbon Nanotube Paste Electrode

Article Preview

Abstract:

A catalytic voltammetric method for the determination of vanadium(V) at a multi-wall carbon nanotube paste electrode (MWCNT-PE) in a 4-(2-pyridylazo)-resorcinol(PAR)-bromate system is proposed. The voltammetric response of V(V)-PAR complex at MWCNT-PE was significantly enhanced because of a catalytic cycle consisting of electrochemical reduction of V(V) ion in the complex and subsequent chemical oxidation of the reduction product of V(V) by bromate. In pH 2.70 H2SO4 solution containing 5.0×10-6 mol•L-1 PAR and 3.0×10-2 mol•L-1 KBrO3 without any preconcentration, the linear sweep voltammetric peak current of the catalytic wave was proportional to the vanadium concentration in the range of 8.0×10-9 to 3.0×10-6 mol•L-1. The detection limit was 2.5×10-9 mol•L-1. Using the proposed method, the vanadium concentration in crude oil was evaluated and the results were compared with those of atomic absorption spectrometry.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

64-67

Citation:

Online since:

January 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.F. Ali and S. Abbas: Fuel Process. Technol. Vol. 87 (2006), p.573

Google Scholar

[2] F.A.C. Amorim, B. Welz, A.C.S. Costa, F.G. Lepri, M.G.R. Vale and S.L.C. Ferreira: Talanta Vol. 72 (2007) , p.349

Google Scholar

[3] H. Xu, D. Yu, Z. Wang and G. Que: Petro. Ref. Eng. Vol. 30 ( 2000), p.1

Google Scholar

[4] J.G. Bergmann, C.H. Ehrhardt, L. Granatelli and J.L. Janik: Anal. Chem. Vol. 39 (1967), p.1258

Google Scholar

[5] S.R. Liu, X.J. Ren and Q.Y. He: Acta Petrolei Sinica (Petroleum Processing Section) Vol. 19 (2003), p.52

Google Scholar

[6] M.Y. Khuhawar and S.N. Lanjwani: Talanta Vol. 43 (1996), p.767

Google Scholar

[7] J.L. Fabec and M.L. Ruschak: Anal. Chem. Vol. 57 (1985), p.1853

Google Scholar

[8] F.G. Lepri, B. Welz, D.L.G. Borges, A.F. Silva, M.G.R. Vale and U. Heitmann: Anal. Chim. Acta Vol. 558 (2006), p.195

Google Scholar

[9] S.B.O. Adeloju and F. Pablo: Anal. Chim. Acta Vol. 288 (1994), p.157

Google Scholar

[10] A.K. Hsieh and T.H. Ong: Microchim. Acta Vol. 105 (1991), p.117

Google Scholar

[11] A. Bobrowski, K. Nowak and J. Zarebski: Anal. Chim. Acta Vol. 543 (2005), p.150

Google Scholar

[12] Y.X. Wang, Y.H. Li and X.Y. Ruan: Chin. J. Anal. Chem. Vol. 32 (2004), p.1206

Google Scholar

[13] J. Wang, D. Lu, S. Thongngamdee, Y. Lin and O.A. Sadik: Talanta Vol. 69 (2006), p.914

Google Scholar

[14] R. Piech, B. Baś, B. Paczosa-Bator and W.W. Kubiak: J. Electroanal. Chem. Vol. 633 (2009), p.333

Google Scholar

[15] Y.H. Li, Y.X. Wang and W.H. Huang: Electroanalysis Vol. 20 (2008), p.1440

Google Scholar

[16] P.H. Deng, J.J. Fei, J. Zhang and J.N. Li: Microchim. Acta Vol. 165 (2009), p.211

Google Scholar

[17] L. Zheng and J.F. Song: Anal. Biochem. Vol. 391 (2009), p.56

Google Scholar

[18] GB/T 18608-2001, Standards Press of China, Beijing (2001).

Google Scholar

[19] Z.X. Zhang, and Y.F. Tu: Chem. J. Chin. Univ. Vol. 6 (1985), p.403

Google Scholar

[20] N. Liu and J.F. Song: Anal. Bioanal. Chem. Vol. 383 (2005), p.358

Google Scholar

[21] R.S. Nicholson and I. Shain: Anal. Chem. Vol. 36 (1964), p.706

Google Scholar