Decolourization of Methylene Blue by Persulfate

Article Preview

Abstract:

The decolourization of dye wastewater by persulfate was studied using methylene blue as a model dye wastewater. Effects of several parameters, such as dose of oxidant, ionic strength, pH, temperature and UV irradiation, were investigated in detail. The results showed that the decolourization reaction of methylene blue by persulfate could be fitted to a pseudo-first order kinetics model. In addition, when the oxidant amount used is 2 times of methylene blue, pH 3.43 and reaction temperature for 60°C, after uv light under the irradiation of 20 min, methylene blue decolorization rate can reach more than 98%. The results are useful for the treatment of dye wastewater.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

76-80

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ge J, Qu J. Applied Catalys is B: Environment al, 2004, 47( 2) : 133-140.

Google Scholar

[2] Okit s u K, Lw asaki K, Yobiko Y, et al. Ul trasoni cs Sonoch emis try, 2005, 4: 255- 262.

Google Scholar

[3] QIN J ian-jun, OO Mau ng H tun, KEKRE K A. Separati onand Purifi cat ion T ech nology, 2007, 2( 56) : 199- 203.

Google Scholar

[4] Barredo-Damas S, Iborra- Clarmi, BES - PIA A, et al. Desal inat ion, 2005, 182: 267- 274.

Google Scholar

[5] Renata Zyl la, JADWIGA Sojka-L edakow icz, EWA St elmach, etal. Desalinat ion, 2006, 198( 1/ 3) : 316 -325.

Google Scholar

[6] Can O T, Bayramoglu M, Kobya M. Ind Eng Chem Res, 2003, 42: 3391~ 3396.

Google Scholar

[7] Kim T H, Park C, Shin E B, et al. World J Microbiol Biotechnol, 2007, 23: 417~ 422.

Google Scholar

[8] Abraham T E, Senan R C, Shaffiqu T S, et al. Biotechnol Prog, 2003, 19: 1372~ 1376 .

Google Scholar

[9] K.C. Huang, R.A. Couttenye, G.E. Hoag, Chemosphere 49 (2002) 413–420.

Google Scholar

[10] G.P. Anipsitakis, D.D. Dionysiou, Appl. Catal. B: Environ. 54 (2004)155–163.

Google Scholar

[11] K.C. Huang, Z.O. Zhao, G.E. Hoag, A. Dahmani, P.A. Block, Chemosphere 61 (2005) 551–560.

Google Scholar

[12] T.K. Lau,W. Chu, N.J.D. Graham, Environ. Sci. Technol. 41 (2007) 613–619.

Google Scholar

[13] J.S. Cao, W.X. Zhang, D.G. Brown, D. Sethi, Environ. Eng. Sci. 25 (2008) 221–228.

Google Scholar

[14] S.X. Li, D.Wei, N.K. Mak, Z.W. Cai, X.R. Xu, H.B. Li, Y. Jiang, Journal of Hazardous Materials . 164 (2009) 26–31.

Google Scholar

[15] K.C. Huang, R.A. Couttenye, G.E. Hoag, Chemosphere 49 (2002) 413–420.

Google Scholar

[16] X.R. Xu, H.B. Li, W.H. Wang, J.D. Gu, Chemosphere 57 (2004) 595–600.

Google Scholar

[17] X.R. Xu, H.B. Li,W.H. Wang, J.D. Gu, Chemosphere 59 (2005) 893–898.

Google Scholar