[1]
Hermawan, Beni. Ekstrak Bahan Alam sebagai Alternatif Inhibitor Korosi,. 22 April (2007).
Google Scholar
[2]
M. Kaneria, B. Kanani, & S. Chanda. (2012). Assessment of effect of hydroalcoholic and decoction methods on extraction of antioxidants from selected Indian medicinal plants. Asian Pacific Journal of Tropical Biomedicine. pp.195-202.
DOI: 10.1016/s2221-1691(12)60041-0
Google Scholar
[3]
L.P. Leong, & G. Shui. (2002). An Investigation of Antioxidant Capacity of Fruits in Singapore Markets. Food Chemistry. Vol. 76, pp.69-75.
DOI: 10.1016/s0308-8146(01)00251-5
Google Scholar
[4]
M. Isabelle, et. al. (2010). Antioxidant activity and profiles of common fruit in Singapore. Food Chemistry. Vol. 12, no. 3, pp.77-84.
Google Scholar
[5]
K.S. Jamuna, et. al. (2011). Total Antioxidant Capacity in Aqueous Extract of Some Common Fruit. International Journal of Pharmaceutical Sciences and Research. Vol. 2, no. 1, pp.448-453.
Google Scholar
[6]
S.H. Lim, et. al. (2006). Antimicrobial Activities of Tannin Extracted from Rhizophora Apiculata Barks. Journal of Tropical Forest Science. Vol. 18, no. 1, pp.59-65.
Google Scholar
[7]
A. Jayalaksmi, & A.G. Mathew. (1982). Chemical Composition and Processing the Arecanut Palm (Areca catechu L). India: CPCRI Kasaragod.
Google Scholar
[8]
I. Sax, & R.J. Lewis. (1989). Condensed Chemical Dictionary, 11th ed. New York: Van Nostrad Reinhold Companya.
Google Scholar
[9]
J. Mabrour, et. al. (2004). Effect of Vegetal Tannin on Anodic Copper Dissolution in Chloride Solution. Corrosion Science. Vol. 46, pp.1833-1847.
DOI: 10.1016/j.corsci.2003.10.022
Google Scholar
[10]
K. P. Vinod Kumar, M. S. Narayanan Pillai, and G. Rexin Thusnavis, Pericarp of the fruit of garcinia mangostana as corrosion inhibitor for mild steel in hydrochloric acid medium, Portugaliae Electrochimica Acta, vol. 28, no. 6, p.373–383, (2010).
DOI: 10.4152/pea.201006373
Google Scholar
[11]
Asdim, Penentuan Efisiensi Inhibisi Ekstrak Kulit Buah Manggis (Garcinia mangostana L) Pada Reaksi Korosi Baja Dalam Larutan Asam, Jurusan Kimia FMIPA Universitas Bengkulu, Bengkulu, 1-4, (2007).
DOI: 10.32734/jtk.v1i2.1418
Google Scholar
[12]
Asdim, Penentuan Efisiensi Inhibisi Ekstrak Kulit Buah Manggis (Garcinia mangostana L) Pada Reaksi Korosi Baja Dalam Larutan Garam, Jurusan Kimia FMIPA Universitas Bengkulu, Bengkulu, 1-4, (2008).
DOI: 10.32734/jtk.v1i2.1418
Google Scholar
[13]
Chang WH, Huang YF, Yeh TS et al. Effect of purple sweet potato leaves consumption on exercise-induced oxidative stress, and IL-6 and HSP72 levels. J Appl Physiol. 2010 Sep 23. (2010).
DOI: 10.1152/japplphysiol.00205.2010
Google Scholar
[14]
Han, X., Shen, T., Lou, H., 2007. , Dietary Polifenol and Their Biological Significance. International Journal Molecular, Science 8, pp.950-988.
Google Scholar
[15]
Nugroho, Adhi . 2011. Pengaruh Penambahan Inhibitor Organik ekstrak Ubi Ungu Terhadap Laju Korosi pada Material Baja Low Carbon di Lingkungan NaCl 3, 5% . Departemen Metalurgi dan Material . Fakultas Teknik Universitas Indonesia. Universitas Indonesia.
DOI: 10.23960/aec.v4.i2.2019.p76-85
Google Scholar
[16]
Ardianto, Fadila Iman . 2010 . Studi Pengaruh Konsentrasi Ekstrak Ubi Ungu Sebagai Green Corrosion Inhibitor Untuk Material Baja Karbon Rendah pada Lingkungan HCL 1M. Departemen Metalurgi dan Material . Fakultas Teknik Universitas Indonesia. Universitas Indonesia.
DOI: 10.32315/ti.6.h055
Google Scholar
[17]
Listanto, Candra . 2011 . Studi Pengaruh Konsentrasi Penambahan Sirup Ubi Ungu Sebagai Inhibitor Organik untuk Material Baja SPCC pada Air Demineralisasi dengan Penambahan CO2. Departemen Metalurgi dan Material . Fakultas Teknik Universitas Indonesia. Universitas Indonesia.
DOI: 10.32315/ti.6.h055
Google Scholar
[18]
ASTM A53/ A53 M – 02. Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless. ASTM International.
DOI: 10.1520/a0053_a0053m-99b
Google Scholar
[19]
M.I. Onsoien, et. al. (2009). A CCT Diagram for an Offshore Pipeline Steel of X70 Type. Welding Journal. Vol. 88, 6 p.
Google Scholar
[20]
M. Morcillo, et. al. (1992). Corrosion of Rusted Steel in Aqueous Solutions of Tannin Acid. Corrosion. Vol. 48, no. 12, pp.1032-1039.
DOI: 10.5006/1.3315906
Google Scholar
[21]
S.S.A. El-Rahim, M.A.M. Ibrahim, & K.F. Khalid. (2001). The inhibition of 4-(2'-amino-5'-methylphenylazo) antipyrine on corrosion of mild steel in HCl solution. Materials Chemistry and Physics. Vol. 70, issue. 3, pp.268-273.
DOI: 10.1016/s0254-0584(00)00462-4
Google Scholar
[22]
V.S. Sastri. (2011). Green Corrosion Inhibitors: Theory and Practice. USA: John Wiley & Sons.
Google Scholar
[23]
E.S. Ferreira, et. al. (2004). Evaluation of the Inhibitor Effect of L-ascorbic Acid on the Corrosion of Mild Steel. Materials Chemistry and Physics. Vol. 83, issue. 1, pp.129-134.
DOI: 10.1016/j.matchemphys.2003.09.020
Google Scholar
[24]
A.Y. Musa, et. al. (2010). Corrosion inhibitive property of 4-amino - 5-phenyl - 4H - 1, 2, 4-triazole-3-thiol for mild steel corrosion in 1, 0M hydrochloric acid. Corrosion Engineering, Science and Technology. Vol. 45, no. 2, pp.163-168.
DOI: 10.1179/147842208x386359
Google Scholar
[25]
S.S.A. El-Rahim, M.A.M. Ibrahim, & K.F. Khalid. (2001). The inhibition of 4-(2'-amino-5'-methylphenylazo) antipyrine on corrosion of mild steel in HCl solution. Materials Chemistry and Physics. Vol. 70, issue. 3, pp.268-273.
DOI: 10.1016/s0254-0584(00)00462-4
Google Scholar
[26]
K.C. Emeregul, & M. Hayvali. (2006). Studies on the Effect of a Newly Synthetized Schiff Base Compound from Phenazone and Vanillin on the Corrosion of Steel in 2 M HCl. Corrosion Science. Vol. 48, issue. 4, pp.797-812.
DOI: 10.1016/j.corsci.2005.03.001
Google Scholar
[27]
M.G. Fontana. (1986). Corrosion Engineering, 3rd ed. USA: McGraw-Hill, Inc.
Google Scholar
[28]
K. P. Vinod Kumar, et. al. (2010). Pericarp of the fruit of garcinia mangostana as corrosion inhibitor for mild steel in hydrochloric acid medium. Portugaliae Electrochimica Acta, vol. 28, no. 6, p.373–383.
DOI: 10.4152/pea.201006373
Google Scholar
[29]
M. Oki, et. al. (2011). Corrosion Inhibition of Mild Steel in Hydrochloric Acid by Tannins from Rhizophora Racemosa. Materials Sciences and Applications. No. 2, pp.592-595.
DOI: 10.4236/msa.2011.26079
Google Scholar
[30]
S. Yahya, et. al. (2011). Inhibitive Behavior of Corrosion of Aluminium Alloy in NaCl by Mangrove Tannin. Sains Malaysiana. Vol. 40, no. 9, pp.953-957.
Google Scholar
[31]
A. Rustandi, et. al. (2011).
Google Scholar
[32]
A. Rustandi, et. al. (2012). The Use of Mixture Piper Betel and Green Tea as a Green Corrosion Inhibitor for API-X52 in Aerated 3. 5%NaCl Solution at Various Rotation Rate. AMR No. 383-390, pp.5418-5425.
DOI: 10.4028/www.scientific.net/amr.383-390.5418
Google Scholar
[33]
C. Menendez, et. al. (2005). Electrochemical Evaluations of High Shear Corrosion Inhbitors, Using Jet Impingement Equipment. Corrosion, NACE International.
Google Scholar
[34]
M. Bouklah, et. al. (2006). Thermodynamic Properties of 2, 5 – bis (4-methoxyphenyl) -1, 3, 4-oxadiazole as a Corrosion Inhibitor for Mild Steel in Normal Sulfuric Acid Medium. Corrosion Science. Vol. 48, issue. 9, pp.2831-2842.
DOI: 10.1016/j.corsci.2005.08.019
Google Scholar