Corrosion Behavior of API-5L in Various Green Inhibitors

Article Preview

Abstract:

In pipeline constructions especially for oil and gas, corrosion is a natural phenomenon which cannot be avoided but can be reduced. There are many kinds of corrosion protection can be used in this area and inhibition is one of it. At present inhibitors used commonly from chemical kind. This kind of inhibitor is expansive and toxic. The knowledge of plant substances have opened a new era of inhibitors. Research has proved that inhibitor can be made from plants which are rich in antioxidant and tannin. This research is conducted to see the inhibition mechanism of several plants which are rich in antioxidant and tannin. The plants used as inhibitors in this research are: manikara zapota; garcinia mangostana l., and ipomea batatas. Corrosion test are applied to API-5L in produce water environment. The conclusions of this research show that it is possible to use plants as inhibitor and when it is used as inhibitor every plant has their own mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

689-695

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Hermawan, Beni. Ekstrak Bahan Alam sebagai Alternatif Inhibitor Korosi,. 22 April (2007).

Google Scholar

[2] M. Kaneria, B. Kanani, & S. Chanda. (2012). Assessment of effect of hydroalcoholic and decoction methods on extraction of antioxidants from selected Indian medicinal plants. Asian Pacific Journal of Tropical Biomedicine. pp.195-202.

DOI: 10.1016/s2221-1691(12)60041-0

Google Scholar

[3] L.P. Leong, & G. Shui. (2002). An Investigation of Antioxidant Capacity of Fruits in Singapore Markets. Food Chemistry. Vol. 76, pp.69-75.

DOI: 10.1016/s0308-8146(01)00251-5

Google Scholar

[4] M. Isabelle, et. al. (2010). Antioxidant activity and profiles of common fruit in Singapore. Food Chemistry. Vol. 12, no. 3, pp.77-84.

Google Scholar

[5] K.S. Jamuna, et. al. (2011). Total Antioxidant Capacity in Aqueous Extract of Some Common Fruit. International Journal of Pharmaceutical Sciences and Research. Vol. 2, no. 1, pp.448-453.

Google Scholar

[6] S.H. Lim, et. al. (2006). Antimicrobial Activities of Tannin Extracted from Rhizophora Apiculata Barks. Journal of Tropical Forest Science. Vol. 18, no. 1, pp.59-65.

Google Scholar

[7] A. Jayalaksmi, & A.G. Mathew. (1982). Chemical Composition and Processing the Arecanut Palm (Areca catechu L). India: CPCRI Kasaragod.

Google Scholar

[8] I. Sax, & R.J. Lewis. (1989). Condensed Chemical Dictionary, 11th ed. New York: Van Nostrad Reinhold Companya.

Google Scholar

[9] J. Mabrour, et. al. (2004). Effect of Vegetal Tannin on Anodic Copper Dissolution in Chloride Solution. Corrosion Science. Vol. 46, pp.1833-1847.

DOI: 10.1016/j.corsci.2003.10.022

Google Scholar

[10] K. P. Vinod Kumar, M. S. Narayanan Pillai, and G. Rexin Thusnavis, Pericarp of the fruit of garcinia mangostana as corrosion inhibitor for mild steel in hydrochloric acid medium, Portugaliae Electrochimica Acta, vol. 28, no. 6, p.373–383, (2010).

DOI: 10.4152/pea.201006373

Google Scholar

[11] Asdim, Penentuan Efisiensi Inhibisi Ekstrak Kulit Buah Manggis (Garcinia mangostana L) Pada Reaksi Korosi Baja Dalam Larutan Asam, Jurusan Kimia FMIPA Universitas Bengkulu, Bengkulu, 1-4, (2007).

DOI: 10.32734/jtk.v1i2.1418

Google Scholar

[12] Asdim, Penentuan Efisiensi Inhibisi Ekstrak Kulit Buah Manggis (Garcinia mangostana L) Pada Reaksi Korosi Baja Dalam Larutan Garam, Jurusan Kimia FMIPA Universitas Bengkulu, Bengkulu, 1-4, (2008).

DOI: 10.32734/jtk.v1i2.1418

Google Scholar

[13] Chang WH, Huang YF, Yeh TS et al. Effect of purple sweet potato leaves consumption on exercise-induced oxidative stress, and IL-6 and HSP72 levels. J Appl Physiol. 2010 Sep 23. (2010).

DOI: 10.1152/japplphysiol.00205.2010

Google Scholar

[14] Han, X., Shen, T., Lou, H., 2007. , Dietary Polifenol and Their Biological Significance. International Journal Molecular, Science 8, pp.950-988.

Google Scholar

[15] Nugroho, Adhi . 2011. Pengaruh Penambahan Inhibitor Organik ekstrak Ubi Ungu Terhadap Laju Korosi pada Material Baja Low Carbon di Lingkungan NaCl 3, 5% . Departemen Metalurgi dan Material . Fakultas Teknik Universitas Indonesia. Universitas Indonesia.

DOI: 10.23960/aec.v4.i2.2019.p76-85

Google Scholar

[16] Ardianto, Fadila Iman . 2010 . Studi Pengaruh Konsentrasi Ekstrak Ubi Ungu Sebagai Green Corrosion Inhibitor Untuk Material Baja Karbon Rendah pada Lingkungan HCL 1M. Departemen Metalurgi dan Material . Fakultas Teknik Universitas Indonesia. Universitas Indonesia.

DOI: 10.32315/ti.6.h055

Google Scholar

[17] Listanto, Candra . 2011 . Studi Pengaruh Konsentrasi Penambahan Sirup Ubi Ungu Sebagai Inhibitor Organik untuk Material Baja SPCC pada Air Demineralisasi dengan Penambahan CO2. Departemen Metalurgi dan Material . Fakultas Teknik Universitas Indonesia. Universitas Indonesia.

DOI: 10.32315/ti.6.h055

Google Scholar

[18] ASTM A53/ A53 M – 02. Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless. ASTM International.

DOI: 10.1520/a0053_a0053m-99b

Google Scholar

[19] M.I. Onsoien, et. al. (2009). A CCT Diagram for an Offshore Pipeline Steel of X70 Type. Welding Journal. Vol. 88, 6 p.

Google Scholar

[20] M. Morcillo, et. al. (1992). Corrosion of Rusted Steel in Aqueous Solutions of Tannin Acid. Corrosion. Vol. 48, no. 12, pp.1032-1039.

DOI: 10.5006/1.3315906

Google Scholar

[21] S.S.A. El-Rahim, M.A.M. Ibrahim, & K.F. Khalid. (2001). The inhibition of 4-(2'-amino-5'-methylphenylazo) antipyrine on corrosion of mild steel in HCl solution. Materials Chemistry and Physics. Vol. 70, issue. 3, pp.268-273.

DOI: 10.1016/s0254-0584(00)00462-4

Google Scholar

[22] V.S. Sastri. (2011). Green Corrosion Inhibitors: Theory and Practice. USA: John Wiley & Sons.

Google Scholar

[23] E.S. Ferreira, et. al. (2004). Evaluation of the Inhibitor Effect of L-ascorbic Acid on the Corrosion of Mild Steel. Materials Chemistry and Physics. Vol. 83, issue. 1, pp.129-134.

DOI: 10.1016/j.matchemphys.2003.09.020

Google Scholar

[24] A.Y. Musa, et. al. (2010). Corrosion inhibitive property of 4-amino - 5-phenyl - 4H - 1, 2, 4-triazole-3-thiol for mild steel corrosion in 1, 0M hydrochloric acid. Corrosion Engineering, Science and Technology. Vol. 45, no. 2, pp.163-168.

DOI: 10.1179/147842208x386359

Google Scholar

[25] S.S.A. El-Rahim, M.A.M. Ibrahim, & K.F. Khalid. (2001). The inhibition of 4-(2'-amino-5'-methylphenylazo) antipyrine on corrosion of mild steel in HCl solution. Materials Chemistry and Physics. Vol. 70, issue. 3, pp.268-273.

DOI: 10.1016/s0254-0584(00)00462-4

Google Scholar

[26] K.C. Emeregul, & M. Hayvali. (2006). Studies on the Effect of a Newly Synthetized Schiff Base Compound from Phenazone and Vanillin on the Corrosion of Steel in 2 M HCl. Corrosion Science. Vol. 48, issue. 4, pp.797-812.

DOI: 10.1016/j.corsci.2005.03.001

Google Scholar

[27] M.G. Fontana. (1986). Corrosion Engineering, 3rd ed. USA: McGraw-Hill, Inc.

Google Scholar

[28] K. P. Vinod Kumar, et. al. (2010). Pericarp of the fruit of garcinia mangostana as corrosion inhibitor for mild steel in hydrochloric acid medium. Portugaliae Electrochimica Acta, vol. 28, no. 6, p.373–383.

DOI: 10.4152/pea.201006373

Google Scholar

[29] M. Oki, et. al. (2011). Corrosion Inhibition of Mild Steel in Hydrochloric Acid by Tannins from Rhizophora Racemosa. Materials Sciences and Applications. No. 2, pp.592-595.

DOI: 10.4236/msa.2011.26079

Google Scholar

[30] S. Yahya, et. al. (2011). Inhibitive Behavior of Corrosion of Aluminium Alloy in NaCl by Mangrove Tannin. Sains Malaysiana. Vol. 40, no. 9, pp.953-957.

Google Scholar

[31] A. Rustandi, et. al. (2011).

Google Scholar

[32] A. Rustandi, et. al. (2012). The Use of Mixture Piper Betel and Green Tea as a Green Corrosion Inhibitor for API-X52 in Aerated 3. 5%NaCl Solution at Various Rotation Rate. AMR No. 383-390, pp.5418-5425.

DOI: 10.4028/www.scientific.net/amr.383-390.5418

Google Scholar

[33] C. Menendez, et. al. (2005). Electrochemical Evaluations of High Shear Corrosion Inhbitors, Using Jet Impingement Equipment. Corrosion, NACE International.

Google Scholar

[34] M. Bouklah, et. al. (2006). Thermodynamic Properties of 2, 5 – bis (4-methoxyphenyl) -1, 3, 4-oxadiazole as a Corrosion Inhibitor for Mild Steel in Normal Sulfuric Acid Medium. Corrosion Science. Vol. 48, issue. 9, pp.2831-2842.

DOI: 10.1016/j.corsci.2005.08.019

Google Scholar